Consimilarity and quaternion matrix equations AX −^X B = C, X − A^X B = C
Tatiana Klimchuk ; Vladimir V. Sergeichuk
Special Matrices, Tome 2 (2014), / Harvested from The Polish Digital Mathematics Library

L. Huang [Consimilarity of quaternion matrices and complex matrices, Linear Algebra Appl. 331 (2001) 21–30] gave a canonical form of a quaternion matrix with respect to consimilarity transformations A ↦ ˜S−1AS in which S is a nonsingular quaternion matrix and h = a + bi + cj + dk ↦ ˜h := a − bi + cj − dk (a, b, c, d ∈ ℝ). We give an analogous canonical form of a quaternion matrix with respect to consimilarity transformations A ↦^S−1AS in which h ↦ ^h is an arbitrary involutive automorphism of the skew field of quaternions. We apply the obtained canonical form to the quaternion matrix equations AX −^X B = C and X − A^X B = C.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:269173
@article{bwmeta1.element.doi-10_2478_spma-2014-0018,
     author = {Tatiana Klimchuk and Vladimir V. Sergeichuk},
     title = {Consimilarity and quaternion matrix equations AX -^X B = C, X - A^X B = C},
     journal = {Special Matrices},
     volume = {2},
     year = {2014},
     zbl = {1310.15022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_spma-2014-0018}
}
Tatiana Klimchuk; Vladimir V. Sergeichuk. Consimilarity and quaternion matrix equations AX −^X B = C, X − A^X B = C. Special Matrices, Tome 2 (2014) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_spma-2014-0018/

[1] J.H. Bevis, F.J. Hall, R.E. Hartwig, Consimilarity and thematrix equation A¯X −XB = C, Current Trends inMatrix Theory (Auburn, Ala., 1986), North-Holland, New York, 1987, pp. 51–64.

[2] H. Dym, Linear Algebra in Action, American Mathematical Society, 2007. | Zbl 1113.15001

[3] F.R. Gantmacher, The Theory of Matrices, Vol. 1, Chelsea, New York, 1959. | Zbl 0085.01001

[4] Y.P. Hong, R.A. Horn, A canonical form for matrices under consimilarity, Linear Algebra Appl. 102 (1988) 143–168. | Zbl 0657.15008

[5] R.A. Horn, C.R. Johnson, Matrix Analysis, 2nd ed., Cambridge University Press, Cambridge, 2013. | Zbl 1267.15001

[6] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991. | Zbl 0729.15001

[7] L. Huang, Consimilarity of quaternion matrices and complex matrices, Linear Algebra Appl. 331 (2001) 21–30. | Zbl 0982.15019

[8] N. Jacobson, The Theory of Rings, American Mathematical Society, New York, 1943. | Zbl 0060.07302

[9] T. Jiang, M. Wei, On solutions of the matrix equations X − AXB = C and X − A¯X B = C, Linear Algebra Appl. 367 (2003) 225–233.

[10] T.S. Jiang, M.S. Wei, On a solution of the quaternion matrix equation X − A˜X B = C and its application, Acta Math. Sin. 21 (2005) 483–490. | Zbl 1083.15019

[11] A.W. Knapp, Advanced Algebra, Birkhaüser, 2007.

[12] P. Lancaster, Explicit solutions of linear matrix equations, SIAM Review 12 (1970) 544–566. [WoS][Crossref] | Zbl 0209.06502

[13] P. Lancaster, L. Lerer, Factored forms for solutions of AX − XB = C and X − AXB = C in companion matrices, Linear Algebra Appl. 62 (1984) 19–49.

[14] P. Lancaster, M. Tismenetsky, The Theory of Matrices with Applications, 2nd ed., Academic Press, 1985. | Zbl 0558.15001

[15] C. Song, G. Chen, On solutions of matrix equation XF − AX = C and XF − A˜X = C over quaternion field, J. Appl. Math. Comput. 37 (2011) 57–68.

[16] C.Q. Song, G.L. Chen, Q.B. Liu, Explicit solutions to the quaternion matrix equations X − AXF = C and X − A˜XF = C, Int. J. Comput. Math. 89 (2012) 890–900.

[17] C. Song, J. Feng, X.Wang, J. Zhao, A real representation method for solving Yakubovich-j-conjugate quaternionmatrix equation, Abstr. Appl. Anal. 2014, Art. ID 285086, 9 pp.

[18] M.-F. Vignéras, Arithmétique des Algèbres de Quaternions, Springer, Berlin, 1980. | Zbl 0422.12008

[19] N.A. Wiegmann, Some theorems on matrices with real quaternion elements, Canad. J. Math. 7 (1955) 191–201. | Zbl 0064.01604

[20] S.F. Yuan, A.P. Liao, Least squares solution of the quaternion matrix equation X − A^XB = C with the least norm, Linear Multilinear Algebra 59 (2011) 985–998. [WoS] | Zbl 1228.65072

[21] F. Zhang, Quaternions and matrices of quaternions, Linear Algebra Appl. 251 (1997) 21–57. | Zbl 0873.15008