A matrix A ∈ ℝn×n is a GM-matrix if A = sI − B, where 0 < ρ(B) ≤ s and B ∈WPFn i.e., both B and Bt have ρ(B) as their eigenvalues and their corresponding eigenvector is entry wise nonnegative. In this article, we consider a generalization of a subclass of GM-matrices having a nonnegative core nilpotent decomposition and prove a characterization result for such matrices. Also, we study various notions of splitting of matrices from this new class and obtain sufficient conditions for their convergence.
@article{bwmeta1.element.doi-10_2478_spma-2014-0017, author = {Agrawal N. Sushama and K. Premakumari and K.C. Sivakumar}, title = {Singular M-matrices which may not have a nonnegative generalized inverse}, journal = {Special Matrices}, volume = {2}, year = {2014}, zbl = {1307.15010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_spma-2014-0017} }
Agrawal N. Sushama; K. Premakumari; K.C. Sivakumar. Singular M-matrices which may not have a nonnegative generalized inverse. Special Matrices, Tome 2 (2014) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_spma-2014-0017/
[1] A. Ben-Israel and T.N.E. Greville, Generalized Inverses: Theory and applications: Springer-Verlag, New York, 2003. | Zbl 1026.15004
[2] Agrawal N. Sushma, K.Premakumari and K.C. Sivakumar, Extensions of Perron-Frobenius splittings and relationships with nonnegative Moore-Penrose inverses, Lin. Multilinear Alg., DOI: 10. 1080/03081087.2013.840616 [Crossref] | Zbl 1307.15009
[3] A. Berman and R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, 1994. | Zbl 0815.15016
[4] A. Berman and R.J. Plemmons, Cones and iterative methods for best least squares solutions of linear systems, SIAM J. Numer. Anal., 11 (1974), 145-154. [Crossref] | Zbl 0244.65024
[5] S.L. Campbell and C.D. Meyer, Jr., Generalized Inverses of Linear Transformations, Dover, Inc., New York, 1991. | Zbl 0732.15003
[6] A. Elhashah and D.B. Szyld, Perron-Frobenius properties of general matrices, Research Report 07-01-10, Department of Mathematics, Temple University, Revised, November 2007.
[7] A. Elhashah and D.B. Szyld, Generalization of M-matrices which may not have a nonnegative inverse, Lin. Alg. Appl., 429 (2008), 2435–2450. | Zbl 1153.15025
[8] A. Elhashah and D.B. Szyld, Two characterizations of matrices with Perron-Frobenius property, Num. Linear Alg. App., (2009), 1–6.
[9] F. Chatelin, Eigenvalues of Matrices, John Wiley & Sons, Philadelphia, USA, 1993.
[10] L. Jena, D. Mishra and S. Pani, Convergene and comparison theorem for single and double decompositions of rectangular matrices, Calcolo, 51 (2014), 141-149. [WoS] | Zbl 1318.65017
[11] C.R. Johnson and P. Tarazaga, On matrices with Perron-Frobenius properties and some negative entries, Positivity, 8 (2004), 327-338. [Crossref] | Zbl 1078.15018
[12] H.T. Le and J.J. McDonald, Inverses of M-type matrices created with irreducible eventually nonnegative matrices, Lin. Alg. Appl., 419 (2006), 668-674. | Zbl 1116.15008
[13] D. Mishra and K.C. Sivakumar, On splitting of matrices and nonnegative generalized inverses, Oper. Matrices, 6 (2012), 85-95. [Crossref] | Zbl 1247.15003
[14] D.Mishra, Nonnegative splittings for rectangular matrices, Computers and Mathematics with Applications, 67 (2014), 136- 144. [WoS]
[15] D. Noutsos, On Perron-Frobenius property of matrices having some negative entries, Lin. Alg. Appl., 412 (2006), 132–153. | Zbl 1087.15024
[16] D.D. Olesky, M.J. Tsatsomeros and P.Van Den Driessche, Mv-matrces: A Generalization of M-matrices based on eventually nonnegative matrices, Elec. J. Linear Algebra, 18 (2008), 339-351. | Zbl 1189.15040