Alon and Yuster give for independent identically distributed real or vector valued random variables X, Y combinatorially proved estimates of the form Prob(∥X − Y∥ ≤ b) ≤ c Prob(∥X − Y∥ ≤ a). We derive these using copositive matrices instead. By the same method we also give estimates for the real valued case, involving X + Y and X − Y, due to Siegmund-Schultze and von Weizsäcker as generalized by Dong, Li and Li. Furthermore, we formulate a version of the above inequalities as an integral inequality for monotone functions.
@article{bwmeta1.element.doi-10_2478_spma-2014-0016, author = {Alexander Kova\v cec and Miguel M. R. Moreira and David P. Martins}, title = {The 123 theorem of Probability Theory and Copositive Matrices}, journal = {Special Matrices}, volume = {2}, year = {2014}, zbl = {1321.60030}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_spma-2014-0016} }
Alexander Kovačec; Miguel M. R. Moreira; David P. Martins. The 123 theorem of Probability Theory and Copositive Matrices. Special Matrices, Tome 2 (2014) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_spma-2014-0016/
[1] H. Alzer, Private communication.
[2] N. Alon and R. Yuster, The 123 Theorem and Its Extensions, J. of Combin. Theory, Ser. A 72, 321-331 (1995). | Zbl 0834.60015
[3] H. Bauer, Probability theory and elements of measure theory, Academic Press, 1981. | Zbl 0466.60001
[4] R.P. Boas, A Primer of Real Functions, 3rd Edition, MAA, 1981.
[5] R.W. Cottle, C.E. Habetler and G.J. Lemke, On classes of copositive matrices, Linear Algebra Appl. 3, 295-310 (1970). [WoS] | Zbl 0196.05602
[6] Z. Dong, J. Li and W.V. Li, A Note on Distribution-Free Symmetrization Inequalities, J. Theor. Probab. 2014 (DOI 10.1007/s10959-014-0538-z) [Crossref] | Zbl 06516680
[7] M. Loève, Probability Theory, I, 4th Edition, Springer 1977.
[8] D.H. Martin, Finite criteria for conditional definiteness of quadratic forms, Linear Algebra Appl. 39, 9-21 (1981). | Zbl 0464.15012
[9] R. Siegmund-Schultze and H. von Weizsäcker, Level crossing probabilities I: One-dimensional random walks and symmetrization, Adv. Math. 208, 672-679 (2007).[WoS] | Zbl 1108.60040