The Hahn-Exton q-Bessel function as the characteristic function of a Jacobi matrix
F. Štampach ; P. Šťovíček
Special Matrices, Tome 2 (2014), / Harvested from The Polish Digital Mathematics Library

A family T(ν), ν ∈ ℝ, of semiinfinite positive Jacobi matrices is introduced with matrix entries taken from the Hahn-Exton q-difference equation. The corresponding matrix operators defined on the linear hull of the canonical basis in ℓ2(ℤ+) are essentially self-adjoint for |ν| ≥ 1 and have deficiency indices (1, 1) for |ν| < 1. A convenient description of all self-adjoint extensions is obtained and the spectral problem is analyzed in detail. The spectrum is discrete and the characteristic equation on eigenvalues is derived explicitly in all cases. Particularly, the Hahn-Exton q-Bessel function Jν(z; q) serves as the characteristic function of the Friedrichs extension. As a direct application one can reproduce, in an alternative way, some basic results about the q-Bessel function due to Koelink and Swarttouw.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:266893
@article{bwmeta1.element.doi-10_2478_spma-2014-0014,
     author = {F. \v Stampach and P. \v S\v tov\'\i \v cek},
     title = {The Hahn-Exton q-Bessel function as the characteristic function of a Jacobi matrix},
     journal = {Special Matrices},
     volume = {2},
     year = {2014},
     zbl = {1308.47039},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_spma-2014-0014}
}
F. Štampach; P. Šťovíček. The Hahn-Exton q-Bessel function as the characteristic function of a Jacobi matrix. Special Matrices, Tome 2 (2014) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_spma-2014-0014/

[1] L. D. Abreu, J. Bustoz, J. L. Cardoso: The roots of the third Jackson q-Bessel function, Internat. J. Math. Math. Sci. 67 (2003) 4241-4248. | Zbl 1063.33023

[2] A. Alonso, B. Simon: The Birman-Krein-Vishik theory of self-adjoint extensions of semibounded operators, J. Operator Theory 4 (1980) 251-270. | Zbl 0467.47017

[3] N. I. Akhiezer: The Classical Moment Problem and Some Related Questions in Analysis, (Oliver & Boyd, Edinburgh, 1965).

[4] M. H. Annaby, Z. S. Mansour: On the zeros of the second and third Jackson q-Bessel functions and their associated q-Hankel transforms, Math. Proc. Camb. Phil. Soc. 147 (2009) 47-67. [WoS] | Zbl 1175.33013

[5] B. M. Brown, J. S. Christiansen: On the Krein and Friedrichs extensions of a positive Jacobi operator, Expo. Math. 23 (2005) 179-186. | Zbl 1078.39019

[6] G. Gasper, M. Rahman: Basic Hypergeometric Series, (Cambridge University Press, Cambridge, 1990).

[7] T. S. Chihara: An Introduction to Orthogonal Polynomials, (Gordon and Breach, Science Publishers, Inc., New York, 1978).

[8] T. Kato: Perturbation Theory for Linear Operators, (Springer-Verlag, Berlin, 1980). | Zbl 0435.47001

[9] H. T. Koelink: Some basic Lommel polynomials, J. Approx. Theory 96 (1999) 345-365. | Zbl 0926.33003

[10] H. T. Koelink,W. Van Assche: Orthogonal polynomials and Laurent polynomials related to the Hahn-Exton q-Bessel function, Constr. Approx. 11 (1995) 477-512. | Zbl 0855.33011

[11] H. T. Koelink, R. F. Swarttouw: On the zeros of the Hahn-Exton q-Bessel function and associated q-Lommel polynomials, J. Math. Anal. Appl. 186 (1994) 690-710. | Zbl 0811.33013

[12] L. O. Silva, R. Weder: On the two-spectra inverse problemfor semi-infinite Jacobi matrices in the limit-circle case,Math. Phys. Anal. Geom. 11 (2008) 131-154. [WoS] | Zbl 1189.47030

[13] B. Simon: The classical moment problem as a self-adjoint finite difference operator, Adv. Math. 137 (1998) 82-203. | Zbl 0910.44004

[14] F. Štampach, P. Šťovíček: The characteristic function for Jacobi matrices with applications, Linear Algebra Appl. 438 (2013) 4130-4155. [WoS] | Zbl 1300.47040

[15] F. Štampach, P. Šťovíček: Special functions and spectrum of Jacobi matrices, Linear Algebra Appl., in press, available online: http://dx.doi.org/10.1016/j.laa.2013.06.024. [Crossref] | Zbl 1330.47033

[16] G. Teschl: Jacobi Operators and Completely Integrable Nonlinear Lattices, (AMS, Rhode Island, 2000).

[17] W. Van Assche: The ratio of q-like orthogonal polynomials, J. Math. Anal. Appl. 128 (1987) 535-547. | Zbl 0634.33018

[18] J. Weidmann. Linear Operators in Hilbert Spaces. (Springer-Verlag, New York, 1980). | Zbl 0434.47001