Bilinear characterizations of companion matrices
Minghua Lin ; Harald K. Wimmer
Special Matrices, Tome 2 (2014), / Harvested from The Polish Digital Mathematics Library

Companion matrices of the second type are characterized by properties that involve bilinear maps.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:267175
@article{bwmeta1.element.doi-10_2478_spma-2014-0010,
     author = {Minghua Lin and Harald K. Wimmer},
     title = {Bilinear characterizations of companion matrices},
     journal = {Special Matrices},
     volume = {2},
     year = {2014},
     zbl = {1291.15004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_spma-2014-0010}
}
Minghua Lin; Harald K. Wimmer. Bilinear characterizations of companion matrices. Special Matrices, Tome 2 (2014) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_spma-2014-0010/

[1] H. Bart and G. Ph. A. Thijsse, Simultaneous reduction to companion and triangular forms of sets of matrices, Linear Multilinear Algebra 26, 231–241 (1990). [Crossref]

[2] A. J. Brzezinski, Output-Only Techniques for Fault Detection, Dissertation, Department of Aerospace Engineering, University of Michigan, Ann Arbor, 2011.

[3] A. J. Brzezinski, E. Wu, and D. S. Bernstein, Curiously commuting vectors, Problem 44-3, IMAGE (Bulletin of the International Linear Algebra Society) 44 (2010).

[4] A. J. Brzezinski, S. Kukreja, Jun Ni, and D. S. Bernstein, Sensor-only fault detection using pseudo transfer function identification, in Proc. Amer. Contr. Conf., 5433–5438, Baltimore, June 2010.

[5] F. De Terán, F. M. Dopico, and J. Pérez, Condition numbers for inversion of Fiedler matrices, Linear Algebra Appl. 439, 944–981 (2013). [WoS] | Zbl 1281.15004

[6] A. Ferrante and H. K. Wimmer, Reachability matrices and cyclic matrices, Electron. J. Linear Algebra 20, 95–102 (2010). | Zbl 1198.15009

[7] I. Gohberg, P. Lancaster, and L. Rodman, Matrix Polynomials, Academic Press, New York, 1982. | Zbl 0482.15001

[8] M. L. J. Hautus, Operator substitution, Linear Algebra Appl. 205–206, 713–739 (1994). | Zbl 0806.47012

[9] Th. Kailath, Linear Systems, Prentice Hall, Englewood Cliffs, 1980.