The theory and applications of complex matrix scalings
Rajesh Pereira ; Joanna Boneng
Special Matrices, Tome 2 (2014), p. 68-77 / Harvested from The Polish Digital Mathematics Library

We generalize the theory of positive diagonal scalings of real positive definite matrices to complex diagonal scalings of complex positive definite matrices. A matrix A is a diagonal scaling of a positive definite matrix M if there exists an invertible complex diagonal matrix D such that A = D*MD and where every row and every column of A sums to one. We look at some of the key properties of complex diagonal scalings and we conjecture that every n by n positive definite matrix has at most 2n−1 scalings and prove this conjecture for certain special classes of matrices.We also use the theory of complex diagonal matrix scalings to formulate a van der Waerden type question on the permanent function; we show that the solution of this question would have applications to finding certain maximally entangled quantum states.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:266983
@article{bwmeta1.element.doi-10_2478_spma-2014-0007,
     author = {Rajesh Pereira and Joanna Boneng},
     title = {The theory and applications of complex matrix scalings},
     journal = {Special Matrices},
     volume = {2},
     year = {2014},
     pages = {68-77},
     zbl = {1291.15080},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_spma-2014-0007}
}
Rajesh Pereira; Joanna Boneng. The theory and applications of complex matrix scalings. Special Matrices, Tome 2 (2014) pp. 68-77. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_spma-2014-0007/

[1] I. Bengtsson and K. Zyczkowski. Geometry of Quantum States. Cambridge University Press, 2006. | Zbl 1146.81004

[2] P. J. Davis. Circulant Matrices. John Wiley & Sons, 1979. | Zbl 0418.15017

[3] P. J. Davis and I. Najfeld. Equisum matrices and their permanence. Quart. Appl. Math., 58(1):151-169, 2000. | Zbl 1036.15018

[4] G. P. Egorychev. The solution of van der Waerden’s problem for permanents. Adv. Math., 42:299-305, 1981. | Zbl 0478.15003

[5] D. I. Falikman. A proof of the van der Waerden conjecture on the permanent of a doubly stochastic matrix. Mat. Zametki, 29:931-938, 1981. | Zbl 0475.15007

[6] G. Hardy, J.E. Littlewood, and G. Polya. Inequalities. Cambridge Mathematical Library, 1952.

[7] R. Hubener, M. Kleinmann, T. Wei, C. Gonzalez-Guillen, and O. Guhne. Geometric measure of entanglement for symmetric states. Phys. Rev. A., 80:032324, 2009.

[8] C. R. Johnson and R. Reams. Scaling of symmetric matrices by positive diagonal congruence. Linear Multilinear Algebra, 57:123-140, 2009. | Zbl 1166.15011

[9] M. Marcus. Subpermanents. Amer. Math. Monthly, 76:530-533, 1969.

[10] A. W. Marshall and I. Olkin. Scaling of matrices to achieve specified row and column sums. Numer. Math., 12(1):83-90, 1968. | Zbl 0165.17401

[11] H. Minc. Permanents. Addison-Wesley Publishing Co., 1978.

[12] R. Pereira. Differentiators and the geometry of polynomials. Journal of Mathematical Analysis and Applications, 285(1):336-348, 2003. | Zbl 1046.47002

[13] A. Pinkus. Interpolation by matrices. Electron. J. Linear Algebra, 11:281-291, 2004. | Zbl 1069.15012

[14] A. Shimony. Degree of entanglement. In D.M. Greenberger and A. Zeilinger, editors, Fundamental problems in quantum theory. A conference held in honor of Professor John A. Wheeler. Proceedings of the conference held in Baltimore, MD, June 18-22, 1994, volume 755 of Annals of the New York Academy of Sciences, pages 675-679, New York, 1995. New York Academy of Sciences.

[15] R. Sinkhorn. A relationship between arbitrary positive matrices and doubly stochastic matrices. Annals of Mathematical Statistics, 35(2):876-879, 1964.[Crossref] | Zbl 0134.25302

[16] T. Wei and P.M. Goldbart. Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys Rev. A., 68:042307, 2003.