Let A be an invertible 3 × 3 complex matrix. It is shown that there is a 3 × 3 permutation matrix P such that the product PA has at least two distinct eigenvalues. The nilpotent complex n × n matrices A for which the products PA with all symmetric matrices P have a single spectrum are determined. It is shown that for a n × n complex matrix [...] there exists a permutation matrix P such that the product PA has at least two distinct eigenvalues.
@article{bwmeta1.element.doi-10_2478_spma-2014-0006, author = {Grega Cigler and Marjan Jerman}, title = {On the separation of eigenvalues by the permutation group}, journal = {Special Matrices}, volume = {2}, year = {2014}, pages = {61-67}, zbl = {1291.15019}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_spma-2014-0006} }
Grega Cigler; Marjan Jerman. On the separation of eigenvalues by the permutation group. Special Matrices, Tome 2 (2014) pp. 61-67. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_spma-2014-0006/
[1] C. S. Ballantine, Stabilization by a diagonal matrix, Proc. Amer. Math. Soc. 25 (1970), 728-734. | Zbl 0228.15001
[2] G. Cigler, M. Jerman, On separation of eigenvalues by certain matrix subgroups, Linear Algebra Appl. 440 (2014), 213-217.[WoS] | Zbl 1286.15007
[3] M. Choi, Z. Huang, C. Li, N. Sze, Every invertible matrix is diagonally equivalent to a matrix with distinct eigenvalues, Linear Algebra Appl. 436 (2012), 3773-3776.[WoS] | Zbl 1244.15006
[4] X. Feng, Z. Li, T. Huang, Is every nonsingular matrix diagonally equivalent to a matrix with all distinct eigenvalues?, Linear Algebra Appl. 436 (2012), 120-125.[WoS] | Zbl 1232.15008
[5] M. E. Fisher, A. T. Fuller, On the stabilization of matrices and the convergence of linear iterative processes, Proc. Cambridge Philos. Soc. 54 (1958), 417-425. | Zbl 0085.33102
[6] S. Friedland, On inverse multiplicative eigenvalue problems for matrices, Linear Algebra Appl. 12 (1975), 127-137. | Zbl 0329.15003
[7] H. Radjavi, P. Rosenthal, Simultaneous Triangularization, Universitext, Springer-Verlag, New York, 2000.