This is a survey of recent results concerning (integer) matrices whose leading principal minors are well-known sequences such as Fibonacci, Lucas, Jacobsthal and Pell (sub)sequences. There are different ways for constructing such matrices. Some of these matrices are constructed by homogeneous or nonhomogeneous recurrence relations, and others are constructed by convolution of two sequences. In this article, we will illustrate the idea of these methods by constructing some integer matrices of this type.
@article{bwmeta1.element.doi-10_2478_spma-2014-0005, author = {A. R. Moghaddamfar and S. Navid Salehy and S. Nima Salehy}, title = {Determinant Representations of Sequences: A Survey}, journal = {Special Matrices}, volume = {2}, year = {2014}, pages = {46-60}, zbl = {1291.15016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_spma-2014-0005} }
A. R. Moghaddamfar; S. Navid Salehy; S. Nima Salehy. Determinant Representations of Sequences: A Survey. Special Matrices, Tome 2 (2014) pp. 46-60. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_spma-2014-0005/
[1] R. Bacher, Determinants of matrices related to the Pascal triangle, J. Théor. Nombres Bordeaux, 14(1)(2002), 19-41. | Zbl 1023.11011
[2] P. F. Byrd, Problem B-12: A Lucas determinant, Fibonacci Quart., 1(4)(1963), 78.
[3] N. D. Cahill, J. R. D’Errico, D. A. Narayan and J. Y. Narayan, Fibonacci determinants, College Math. J., 33(3)(2002), 221-225.[Crossref] | Zbl 1046.11007
[4] N. D. Cahill, J. R. D’Errico and J. P. Spence, Complex factorizations of the Fibonacci and Lucas numbers, Fibonacci Quart., 41(1)(2003), 13-19. | Zbl 1056.11005
[5] N. D. Cahill and D. A. Narayan, Fibonacci and Lucas numbers as tridiagonal matrix determinants, Fibonacci Quart., 42(3)(2004), 216-221. | Zbl 1080.11014
[6] G. S. Cheon, S. G. Hwang, S. H. Rim and S. Z. Song, Matrices determined by a linear recurrence relation among entries, Special issue on the Combinatorial Matrix Theory Conference (Pohang, 2002), Linear Algebra Appl. 373 (2003), 89-99. | Zbl 1026.05003
[7] K. Griffin, J. L. Stuart and M. J. Tsatsomeros, Noncirculant Toeplitz matrices all of whose powers are Toeplitz, CzechoslovakMath. J., 58(133)(4)(2008), 1185-1193. | Zbl 1174.15011
[8] A. R. Moghaddamfar, K. Moghaddamfar and H. Tajbakhsh, New families of integer matrices whose leading principal minors form some well-known sequences, Electron. J. Linear Algebra, 22(2011), 598-619. | Zbl 1221.15011
[9] A. R. Moghaddamfar and S. M. H. Pooya, Generalized Pascal triangles and Toeplitz matrices, Electron. J. Linear Algebra, 18(2009), 564-588. | Zbl 1190.15006
[10] A. R. Moghaddamfar, S. M. H. Pooya, S. Navid Salehy and S. Nima Salehy, Fibonacci and Lucas sequences as the principal minors of some infinite matrices, J. Algebra Appl., 8(6)(2009), 869-883.[WoS][Crossref] | Zbl 1190.15033
[11] A. R. Moghaddamfar, S. Rahbariyan, S. Navid Salehy and S. Nima Salehy, Some infinite matrices whose leading principal minors are well-known sequences, Util. Math., (to appear) | Zbl 1166.15002
[12] A. R. Moghaddamfar and H. Tajbakhsh, Lucas numbers and determinants, Integers, 12(1)(2012), 21-51. | Zbl 1261.11032
[13] A. R. Moghaddamfar and H. Tajbakhsh, More determinant representations for sequences, J. Integer Seq., 17(5)(2014), Article 14.5.6, 16 pp. | Zbl 06291141
[14] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences. Published electronically at http://oeis.org, 2013. | Zbl 1274.11001
[15] G. Strang, Introduction to Linear Algebra, Third Edition. Wellesley-Cambridge Press, 1993.
[16] G. Strang and K. Borre, Linear Algebra, Geodesy, and GPS, Wellesley-Cambridge Press, 1997.
[17] M. Tan, Matrices associated to biindexed linear recurrence relations, Ars Combin., 86 (2008), 305-319. | Zbl 1224.05018
[18] S. Vajda, Fibonacci and Lucas numbers, and the golden section: Theory and applications, With chapter XII by B. W. Conolly. Ellis Horwood Series: Mathematics and its Applications. Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley & Sons, Inc.], New York, 1989. 190 pp.
[19] Y. Yang and M. Leonard, Evaluating determinants of convolution-like matrices via generating functions, Int. J. Inf. Syst. Sci., 3(4)(2007), 569-580. | Zbl 1131.15007
[20] H. Zakrajšek and M. Petkovšek, Pascal-like determinants are recursive, Adv. in App Math., 33(3)(2004), 431-450.