Bounds for sine and cosine via eigenvalue estimation
Pentti Haukkanen ; Mika Mattila ; Jorma K. Merikoski ; Alexander Kovacec
Special Matrices, Tome 2 (2014), / Harvested from The Polish Digital Mathematics Library

Define n × n tridiagonal matrices T and S as follows: All entries of the main diagonal of T are zero and those of the first super- and subdiagonal are one. The entries of the main diagonal of S are two except the (n, n) entry one, and those of the first super- and subdiagonal are minus one. Then, denoting by λ(·) the largest eigenvalue, [...] Using certain lower bounds for the largest eigenvalue, we provide lower bounds for these expressions and, further, lower bounds for sin x and cos x on certain intervals. Also upper bounds can be obtained in this way.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:267042
@article{bwmeta1.element.doi-10_2478_spma-2014-0003,
     author = {Pentti Haukkanen and Mika Mattila and Jorma K. Merikoski and Alexander Kovacec},
     title = {Bounds for sine and cosine via eigenvalue estimation},
     journal = {Special Matrices},
     volume = {2},
     year = {2014},
     zbl = {1291.15049},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_spma-2014-0003}
}
Pentti Haukkanen; Mika Mattila; Jorma K. Merikoski; Alexander Kovacec. Bounds for sine and cosine via eigenvalue estimation. Special Matrices, Tome 2 (2014) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_spma-2014-0003/

[1] D. Caccia, Solution of Problem E 2952, Amer. Math. Monthly 93 (1986), 568-569.

[2] N. D. Cahill, J. R. D’Errico and J. P. Spence, Complex factorizations of the Fibonacci and Lucas numbers, Fibonacci Quart. 41 (2003), 13-19. | Zbl 1056.11005

[3] K. Fan, O. Taussky and J. Todd, Discrete analogs of inequalities of Wirtinger, Monatsh. Math. 59 (1955), 73-90. | Zbl 0064.29803

[4] M. Fekete and G. Pólya, Über ein Problem von Laguerre. In G. Pólya, Collected Papers, Vol. II: Location of zeros, Ed. by R. Boas, MIT Press, 1974, p. 2.

[5] R. A. Horn and C. R. Johnson, Matrix Analysis, Second Edition, Cambridge Univ. Pr., 2013. | Zbl 1267.15001

[6] S. Hyyrö, J. K. Merikoski and A. Virtanen, Improving certain simple eigenvalue bounds, Math. Proc. Camb. Phil. Soc. 99 (1986), 507-518. | Zbl 0606.15011

[7] M.-K. Kuo, Re_nements of Jordan’s inequality, J. Ineq. Appl. 2011 (2011), Art. 130, 6 pp.

[8] D. London, Two inequalities in nonnegative symmetric matrices, Pacific J. Math. 16 (1966), 515-536. | Zbl 0136.25001

[9] G. V. Milovanovic, I. Ž. Milovanovic, On discrete inequalities of Wirtinger’s type, J. Math. Anal. Appl. 88 (1982), 378-387.[Crossref] | Zbl 0505.26010

[10] N. Obreschkoff, Verteilung und Berechnung der Nullstellen reeller Polynome, VEB Deutsch. Verl. Wiss., 1963. | Zbl 0156.28202

[11] F. Qi, D.-W. Niu and B.-N. Guo, Refinements, generalizations, and applications of Jordan’s inequality and related problems, J. Ineq. Appl. 2009 (2009), Art. ID 271923, 52 pp.[WoS] | Zbl 1175.26048

[12] R. Redheffer, Problem 5642, Amer. Math. Monthly 75 (1968), 1125.

[13] R. Redheffer, Correction, Amer. Math. Monthly 76 (1969), 422.

[14] D. E. Rutherford, Some continuant determinants arising in physics and chemistry, I, Proc. Royal Soc. Edinburgh 62A (1947), 229-236. | Zbl 0030.00501

[15] J. Sándor, On the concavity of sin x/x, Octogon Math. Mag. 13 (2005), 406-407.

[16] J. Sándor, Selected Chapters of Geometry, Analysis and Number Theory: Classical Topics in New Perspectives, Lambert Acad. Publ., 2008.

[17] D. Y. Savio and E. R. Suryanarayan, Chebychev polynomials and regular polygons, Amer. Math. Monthly 100 (1993), 657-661. | Zbl 0789.33003

[18] J. P. Williams, A delightful inequality, Solution of Problem 5642, Amer. Math. Monthly 76 (1969), 1153-1154.

[19] A. Y. Özban, A new refined form of Jordan’s inequality and its applications, Appl. Math. Lett. 19 (2006), 155-160. [Crossref] | Zbl 1109.26011