We prove that any quaternionic matrix of order n ≤3 admits a characteristic function, whose roots are the left eigenvalues, that satisfes Cayley-Hamilton theorem.
@article{bwmeta1.element.doi-10_2478_spma-2014-0002, author = {E. Mac\'\i as-Virg\'os and M.J. Pereira-S\'aez}, title = {Cayley-Hamilton theorem for left eigenvalues of 3 $\times$ 3 quaternionic matrices}, journal = {Special Matrices}, volume = {2}, year = {2014}, zbl = {1291.15076}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_spma-2014-0002} }
E. Macías-Virgós; M.J. Pereira-Sáez. Cayley-Hamilton theorem for left eigenvalues of 3 × 3 quaternionic matrices. Special Matrices, Tome 2 (2014) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_spma-2014-0002/
[1] Aslaksen, H. Quaternionic determinants. Math. Intell. 18, No. 3, 57-65 (1996). | Zbl 0881.15007
[2] Cohen, N.; De Leo, S. The quaternionic determinant. Electron. J. Linear Algebra 7, 100-111 (2000). | Zbl 0977.15004
[3] Gelfand, I.M.; Krob, D.; Lascoux, A.; Leclerc, B.; Retakh, V.; Thibon, J.-Y. Noncommutative symmetric functions. Adv. Math., 112, No. 2, 218-348 (1995).[Crossref][WoS] | Zbl 0831.05063
[4] Gelfand, I.; Gelfand, S.; Retakh, V.; Lee Wilson R. Quasideterminants. Adv. Math. 193, No. 1, 56-141 (2005). | Zbl 1079.15007
[5] Huang, L. On two questions about quaternion matrices. Linear Algebra Appl. 318, No. 1-3, 79-86 (2000). | Zbl 0965.15016
[6] Macías-Virgós, E.; Pereira-Sáez, M.J. A topological approach to left eigenvalues of quaternionic matrices, Linear Multilinear Algebra 62, No. 2, 139-158 (2014).[WoS] | Zbl 1290.15010
[7] Wood, R.M.W. Quaternionic eigenvalues. Bull. Lond. Math. Soc. 17, 137-138 (1985). | Zbl 0537.15011
[8] Zhang, F. Quaternions and matrices of quaternions. Linear Algebra Appl. 251, 21-57 (1997). | Zbl 0873.15008
[9] Zhang, F. Geršgorin type theorems for quaternionic matrices. Linear Algebra Appl. 424, No. 1, 139-153 (2007). [WoS] | Zbl 1117.15017