Letr Σn(C) denote the space of all n χ n symmetric matrices over the complex field C. The main objective of this paper is to prove that the maps Φ : Σn(C) -> Σn (C) satisfying for any fixed irre- ducible characters X, X' -SC the condition dx(A +aB) = dχ·(Φ(Α ) + αΦ(Β)) for all matrices A,В ε Σ„(С) and all scalars a ε C are automatically linear and bijective. As a corollary of the above result we characterize all such maps Φ acting on ΣИ(С).
@article{bwmeta1.element.doi-10_2478_spma-2014-0001, author = {M. Purifica\c c\~ao Coelho and M. Ant\'onia Duffner and Alexander E. Guterman}, title = {Immanant Conversion on Symmetric Matrices}, journal = {Special Matrices}, volume = {2}, year = {2014}, zbl = {1294.15008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_spma-2014-0001} }
M. Purificação Coelho; M. Antónia Duffner; Alexander E. Guterman. Immanant Conversion on Symmetric Matrices. Special Matrices, Tome 2 (2014) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_spma-2014-0001/
[1] C. Cao, X. Tang: Determinant preserving transformations on symmetric matrix spaces, Electronic Journal of Linear Algebra 11 (2004) 205-211. | Zbl 1069.15004
[2] M. P. Coelho: Linear preservers of the permanent on symmetric matrices, Linear and Multilinear Algebra 41 (1996) 1-8.
[3] M. P. Coelho, M. A. Dufner: Immanant preserving and immanant converting maps, Linear Algebra Appl. 418(2006) 177-187. | Zbl 1107.15002
[4] M. P. Coelho, M. A. Dufner: Linear preservers of immanants on symmetric matrices, Linear Algebra Appl. 255 (1997) 314-334. | Zbl 0944.15004
[5] M. P. Coelho, M. A. Dufner: On the conversion of an immanant into another on symmetric matrices, Linear and Multilinear Algebra, 51:2 (2003), 137-145.
[6] G. Dolinar and P. Semrl: Determinant preserving maps on matrix algebras, Linear Algebra and its Application 348 (2002) 189-192.
[7] G. Frobenius,¨Uber die Darstellung der endlichen Gruppen durch lineare Substitutionen. Sitzungsber. Preuss. Akad. Wiss. Berlin (1897), 994-1015. | Zbl 28.0130.01
[8] G.D. James, A. Kerber: The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications 16, Cambridge University Press, 1981.
[9] B. Kuzma: A note on immanant preservers, Fundamental and Applied Mathematics, 13, 4, (2007) 113-120, translated in Journal of Mathematical Sciences (New York) 155:6 (2008), 872-876.
[10] M. H. Lim: Linear transformations on symmetric matrices, Linear and Multilinear Algebra 7 (1979) 47-57. | Zbl 0498.15008
[11] D.E. Littlewood: The theory of group characters, Oxford University Press, 1958
[12] V. Tan and F. Wang: On determinant preserver problems, Linear Algebra and its Application 369 (2003) 311-317. | Zbl 1032.15004