Pairs of k -step reachability and m -step observability matrices
Augusto Ferrante ; Harald K. Wimmer
Special Matrices, Tome 1 (2013), p. 25-27 / Harvested from The Polish Digital Mathematics Library

Let V and W be matrices of size n × pk and qm × n, respectively. A necessary and sufficient condition is given for the existence of a triple (A,B,C) such that V a k-step reachability matrix of (A,B) andW an m-step observability matrix of (A,C).

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:267506
@article{bwmeta1.element.doi-10_2478_spma-2013-0005,
     author = {Augusto Ferrante and Harald K. Wimmer},
     title = {
      Pairs of
      k
      -step reachability and
      m
      -step observability matrices
    },
     journal = {Special Matrices},
     volume = {1},
     year = {2013},
     pages = {25-27},
     zbl = {1291.15003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_spma-2013-0005}
}
Augusto Ferrante; Harald K. Wimmer. 
      Pairs of
      k
      -step reachability and
      m
      -step observability matrices
    . Special Matrices, Tome 1 (2013) pp. 25-27. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_spma-2013-0005/

[1] A. Ben-Israel and Th. N. E. Greville, Generalized Inverses, Theory and Applications, 2nd edition, Springer, New York, 2003. | Zbl 1026.15004

[2] F. Cecioni, Sopra operazioni algebriche, Ann. Scuola Nom. Sup. Pisa Sci. Fis. Mat. 11 (1910), 17–20.

[3] M. Dahleh, M. A. Dahleh, and G. Verghese, Lectures on Dynamic Systems and Control, MIT Lectures, 2004. Available online: web.mit.edu/6.241/www/chapter_22.pdf web.mit.edu/6.241/www/chapter_26.pdf

[4] B. De Schutter, Minimal state-space realization in linear system theory: An overview, J. Comput. Appl. Math. 121 (2000) , 331–354. | Zbl 0963.93008

[5] A. Ferrante and H. K. Wimmer, Reachability matrices and cyclic matrices, Electron. J. Linear Algebra 20 (2010), 95–102. | Zbl 1198.15009

[6] E. W. Kamen, P. P. Khargonekar, and K. R. Poolla, A transfer function approach to linear time-varying discrete-time systems, SIAM J. Control Optim. 23 (1985), 550–565. [Crossref] | Zbl 0626.93039

[7] S. J. Qin, An overview of subspace identification, Comput. Chem. Eng. 30 (2006), 1502–1513. [Crossref]

[8] C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and Its Applications, Wiley, New York, 1971. | Zbl 0236.15004

[9] E. D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems, 2nd edition., Springer, New York, 1998. | Zbl 0945.93001

[10] A. J. Tether, Construction of minimal linear state-variable models from finite input-output data, IEEE Trans. Automat. Control. 15 (1970), 427–436.