Factorizable matrices
Miroslav Fiedler ; Frank J. Hall
Special Matrices, Tome 1 (2013), p. 3-9 / Harvested from The Polish Digital Mathematics Library

We study square matrices which are products of simpler factors with the property that any ordering of the factors yields a matrix cospectral with the given matrix. The results generalize those obtained previously by the authors.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:267260
@article{bwmeta1.element.doi-10_2478_spma-2013-0002,
     author = {Miroslav Fiedler and Frank J. Hall},
     title = {Factorizable matrices},
     journal = {Special Matrices},
     volume = {1},
     year = {2013},
     pages = {3-9},
     zbl = {1291.15033},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_spma-2013-0002}
}
Miroslav Fiedler; Frank J. Hall. Factorizable matrices. Special Matrices, Tome 1 (2013) pp. 3-9. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_spma-2013-0002/

[1] M. Fiedler, A note on companion matrices, Linear Algebra Appl. 372 (2003), 325–331. | Zbl 1031.15014

[2] M. Fiedler, Complementary basic matrices, Linear Algebra Appl. 384 (2004), 199–206. | Zbl 1059.15026

[3] M. Fiedler, Intrinsic products and factorizations of matrices, Linear Algebra Appl. 428 (2008), 5–13. [WoS] | Zbl 1135.15009

[4] M. Fiedler and F. J. Hall, Some inheritance properties for complementary basic matrices, Linear Algebra Appl. 433 (2010), 2060–2069. [WoS] | Zbl 1254.15020

[5] M. Fiedler and F. J. Hall, G-matrices, Linear Algebra Appl. 436 (2012), 731–741.

[6] M. Fiedler and F. J. Hall, A note on permanents and generalized complementary basic matrices, Linear Algebra Appl. 436 (2012), 3553–3569. [WoS] | Zbl 1241.15005

[7] M. Fiedler and F. J. Hall, Some graph theoretic properties of generalized complementary basic matrices, Linear Algebra Appl. 438 (2013), 3365–3374. [WoS] | Zbl 1261.05055

[8] M. Fiedler and F. J. Hall, Combinatorial aspects of generalized complementary basic matrices, to appear in Central European Journal of Mathematics. [WoS]

[9] M. Fiedler, F. J. Hall, and M. Stroev, Permanents, determinants, and generalized complementary basic matrices, to appear in Operators and Matrices. | Zbl 1314.15007