Nonnegative definite hermitian matrices with increasing principal minors
Shmuel Friedland
Special Matrices, Tome 1 (2013), p. 1-2 / Harvested from The Polish Digital Mathematics Library

A nonnegative definite hermitian m × m matrix A≠0 has increasing principal minors if det A[I] ≤ det A[J] for I⊂J, where det A[I] is the principal minor of A based on rows and columns in the set I ⊆ {1,...,m}. For m > 1 we show A has increasing principal minors if and only if A−1 exists and its diagonal entries are less or equal to 1.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:267205
@article{bwmeta1.element.doi-10_2478_spma-2013-0001,
     author = {Shmuel Friedland},
     title = {Nonnegative definite hermitian matrices with increasing principal minors},
     journal = {Special Matrices},
     volume = {1},
     year = {2013},
     pages = {1-2},
     zbl = {1291.15089},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_spma-2013-0001}
}
Shmuel Friedland. Nonnegative definite hermitian matrices with increasing principal minors. Special Matrices, Tome 1 (2013) pp. 1-2. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_spma-2013-0001/

[1] D. Carlson, Weakly sign-symmetric matrices and some determinantal inequalities, Colloq. Math. 17 (1967), 123–129. | Zbl 0147.27502

[2] Ky Fan, Subadditive functions on a distributive lattice and an extension of Szász’s inequality, J. Math. Anal. Appl. 18 (1967), 262–268. [Crossref] | Zbl 0204.02701

[3] Ky Fan, An inequality for subadditive functions on a distributive lattice, with application to determinantal inequalities, Linear Algebra Appl. 1 (1968), 33–38. [Crossref] | Zbl 0155.06503

[4] S. Friedland and S. Gaubert, Submodular spectral functions of principal submatrices of a hermitian matrix, extensions and applications, Linear Algebra Appl., 438 (2013), 3872–3884. [WoS] | Zbl 1281.15046

[5] F. R. Gantmacher and M. G. Kre˘ın, Oszillationsmatrizen, Oszillationskerne und kleine Schwingungen mechanischer Systeme. Wissenschaftliche Bearbeitung der deutschen Ausgabe: Alfred Stöhr. Mathematische Lehrbücher und Monographien, I. Abteilung, Bd. V. Akademie-Verlag, Berlin, 1960.

[6] S.A. Goreinov, E.E. Tyrtyshnikov, and N.L. Zamarashkin, A theory of pseudo-skeleton approximations of matrices, Linear Algebra Appl. 261 (1997), 1 – 21. | Zbl 0877.65021

[7] S. Iwata, Submodular function minimization, Math. Program. 112 (2008), 45–64. [WoS] | Zbl 1135.90038

[8] D. M. Kotelyanski˘ı, On the theory of nonnegative and oscillating matrices, Ukrain. Mat. Zh. 2 (1950), 94–101.

[9] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, An analysis of approximations for maximizing submodular set functions. I, Math. Program. 14 (1978), 265–294. [Crossref] | Zbl 0374.90045