On the structure of groups whose non-abelian subgroups are subnormal
Leonid Kurdachenko ; Sevgi Atlıhan ; Nikolaj Semko
Open Mathematics, Tome 12 (2014), p. 1762-1771 / Harvested from The Polish Digital Mathematics Library

The main aim of this article is to examine infinite groups whose non-abelian subgroups are subnormal. In this sense we obtain here description of such locally finite groups and, as a consequence we show several results related to such groups.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:269626
@article{bwmeta1.element.doi-10_2478_s11533-014-0444-8,
     author = {Leonid Kurdachenko and Sevgi Atl\i han and Nikolaj Semko},
     title = {On the structure of groups whose non-abelian subgroups are subnormal},
     journal = {Open Mathematics},
     volume = {12},
     year = {2014},
     pages = {1762-1771},
     zbl = {1310.20029},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0444-8}
}
Leonid Kurdachenko; Sevgi Atlıhan; Nikolaj Semko. On the structure of groups whose non-abelian subgroups are subnormal. Open Mathematics, Tome 12 (2014) pp. 1762-1771. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0444-8/

[1] Ballester-Bolinches, Kurdachenko L.A., Otal J., Pedraza T., Infinite groups with many permutable subgroups, Rev. Mat. Iberoam., 2008, 24(3), 745–764 http://dx.doi.org/10.4171/RMI/555 | Zbl 1175.20036

[2] Berkovich Y., Groups of Prime Power Order, vol. 1, de Gruyter Exp. Math., 46, Berlin, 2008

[3] Dixon M.R., Sylow Theory, Formations and Fitting classes in Locally Finite Groups, World Sci. Publ. Co., Singapore, 1994 http://dx.doi.org/10.1142/2386

[4] Dixon M.R., Subbotin I.Ya., Groups with finiteness conditions on some subgroup systems: a contemporary stage, Algebra Discrete Math., 2009, 4, 29–54 | Zbl 1199.20051

[5] Hall P., Some sufficient conditions for a group to be nilpotent, Illinois J. Math., 1958, 2, 787–801 | Zbl 0084.25602

[6] Knyagina V.N., Monakhov V.S., On finite groups with some subnormal Schmidt subgroups, Sib. Math. J., 2004, 45(6), 1316–1322 http://dx.doi.org/10.1023/B:SIMJ.0000048922.59466.20 | Zbl 1096.20022

[7] Kurdachenko L.A., Otal J., Subbotin I.Ya., Groups with Prescribed Quotient Groups and Associated Module Theory, World Sci. Publ. Co., New Jersey, 2002 | Zbl 1019.20001

[8] Kurdachenko L.A., Otal J., Subbotin I.Ya., Artian Modules over Group Rings, Front. Math., Birkhäuser, Basel, 2007 | Zbl 1110.16001

[9] Kurdachenko L.A., Otal J., On the existence of normal complement to the Sylow subgroups of some infinite groups, Carpathian J. Math., 2013, 29(2), 195–200 | Zbl 1299.20045

[10] Kuzenny N.F., Semko N.N., The structure of soluble non-nilpotent metahamiltonian groups, Math. Notes, 1983, 34(2), 179–188

[11] Kuzenny N.F., Semko N.N., The structure of soluble metahamiltonian groups, Dokl. Akad. Nauk Ukrain. SSR Ser. A, 1985, 2, 6–8

[12] Kuzenny N.F., Semko, N.N., On the structure of non-periodic metahamiltonian groups, Russian Math. (Iz. VUZ), 1986, 11, 32–40

[13] Kuzenny N.F., Semko N.N., The structure of periodic metabelian metahamiltonian groups with a non-elementary commutator subgroup, Ukrainian Math. J., 1987, 39(2), 180–185

[14] Kuzenny N.F., Semko N.N., The structure of periodic metabelian metahamiltonian groups with an elementary commutator subgroup of rank two, Ukrainian Math. J., 1988, 40(6), 627–633 http://dx.doi.org/10.1007/BF01057181

[15] Kuzenny N.F., Semko N.N., The structure of periodic non-abelian metahamiltonian groups with an elementary commutator subgroup of rank three, Ukrainian Math. J., 1989, 41(2), 153–158 http://dx.doi.org/10.1007/BF01060379 | Zbl 0713.20032

[16] Kuzenny N.F., Semko, N.N., Metahamiltonian groups with elementary commutator subgroup of rank two, Ukrainian Math. J., 1990, 42(2), 149–154 http://dx.doi.org/10.1007/BF01071007

[17] Lennox J.C., Stonehewer S.E., Subnormal Subgroups of Groups, Oxford Math. Monogr., Oxford University Press, New York, 1987 | Zbl 0606.20001

[18] Mahnev A.A., Finite metahamiltonian groups, Ural. Gos. Univ. Mat. Zap., 1976, 10(1), 60–75 | Zbl 0414.20016

[19] Möhres W., Auflösbarkcit von Gruppen deren Untergruppen alle subnormal sind., Arch. Math., 1990, 54(3), 232–235 http://dx.doi.org/10.1007/BF01188516 | Zbl 0663.20027

[20] Nagrebetskij V.T., Finite groups every non-nilpotent subgroup of which is normal, Ural. Gos. Univ. Mat. Zap., 1966, 6(3), 45–49

[21] Nagrebetskij V.T., Finite nilpotent groups every non-abelian subgroup of which is normal, Ural. Gos. Univ. Mat. Zap., 1967, 6(1), 80–88

[22] Robinson D.J.S., Finiteness Conditions and Generalized Soluble Groups, vol. 2, Ergeb. Math. Grenzgeb., 63, Springer, Berlin-Heidelberg-New York, 1972 http://dx.doi.org/10.1007/978-3-662-07241-7

[23] Romalis G.M., Sesekin N.F., Metahamiltonian groups I, Ural. Gos. Univ. Mat. Zap., 1966, 5(3), 101–106

[24] Romalis G.M., Sesekin N.F., Metahamiltonian groups II, Ural. Gos. Univ. Mat. Zap., 1968, 6(3), 50–52 | Zbl 0351.20021

[25] Romalis G.M., Sesekin N.F., The metahamiltonian groups III, Ural. Gos. Univ. Mat. Zap., 1970, 7(3), 195–199 | Zbl 0324.20036

[26] Schur I., Über die Darstellungen der endlichen Gruppen durch gebrochene lineare substitutione, J. Reine Angew. Math., 1904, 127, 20–50 | Zbl 35.0155.01

[27] Smith H., Torsion free groups with all non-nilpotent subgroups subnormal, In: Topics in infinite groups, Quad. Mat., 8, Seconda Università degli Studi di Napoli, Caserta, 2001, 297–308 | Zbl 1017.20017

[28] Smith H., Groups with all non-nilpotent subgroup subnormal, In: Topics in infinite groups, Quad. Mat., 8, Seconda Università degli Studi di Napoli, Caserta, 2001, 309–326 | Zbl 1017.20018

[29] Stonehewer S.E., Formations and a class of locally soluble groups, Proc. Cambridge Phil. Soc., 1966, 62, 613–635 http://dx.doi.org/10.1017/S0305004100040275 | Zbl 0145.02503

[30] Vedernikov V.A., Finite groups with subnormal Schmidt subgroups, Sib. Algebra Logika, 2007, 46(6), 669–687 | Zbl 1155.20304