In this paper, we consider the problem of the existence of conformal metrics with prescribed scalar curvature on the standard sphere S n, n ≥ 3. We give new existence and multiplicity results based on a new Euler-Hopf formula type. Our argument also has the advantage of extending well known results due to Y. Li [16].
@article{bwmeta1.element.doi-10_2478_s11533-014-0443-9, author = {Dina Abuzaid and Randa Ben Mahmoud and Hichem Chtioui and Afef Rigane}, title = {Topological tools for the prescribed scalar curvature problem on S n}, journal = {Open Mathematics}, volume = {12}, year = {2014}, pages = {1829-1839}, zbl = {1296.53073}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0443-9} }
Dina Abuzaid; Randa Ben Mahmoud; Hichem Chtioui; Afef Rigane. Topological tools for the prescribed scalar curvature problem on S n. Open Mathematics, Tome 12 (2014) pp. 1829-1839. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0443-9/
[1] A. Ambrosetti, M. Badiale, Homoclinics: Poincaré-Melinkov type results via varitional approch, Ann.Inst.H.Poincaré Anal. Nonlinéaire 15 (1998) 233–252. http://dx.doi.org/10.1016/S0294-1449(97)89300-6 | Zbl 1004.37043
[2] Ambrosetti A., Garcia Azorero J., Peral A., Perturbation of , the Scalar Curvature Problem in ℝ Nand related topics, Journal of Functional Analysis, 165 (1999), 117–149. http://dx.doi.org/10.1006/jfan.1999.3390
[3] A. Bahri, Critical point at infinity in some variational problems, Pitman Res. Notes Math, Ser 182, Longman Sci. Tech. Harlow 1989. | Zbl 0676.58021
[4] A. Bahri, An invariant for yamabe-type flows with applications to scalar curvature problems in high dimensions, A celebration of J. F. Nash Jr., Duke Math. J. 81 (1996), 323–466. http://dx.doi.org/10.1215/S0012-7094-96-08116-8
[5] A. Bahri and P. Rabinowitz, Periodic orbits of hamiltonian systems of three body type, Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991), 561–649. | Zbl 0745.34034
[6] M. Ben Ayed, Y. Chen, H. Chtioui and M. Hammami, On the prescribed scalar curvature problem on 4-manifolds, Duke Math. J. 84 (1996), 633–677. http://dx.doi.org/10.1215/S0012-7094-96-08420-3 | Zbl 0862.53034
[7] R. Ben Mahmoud, H. Chtioui, Existence results for the prescribed Scalar curvature on S3, Annales de l’Institut Fourier, 61 (2011), 971–986. http://dx.doi.org/10.5802/aif.2634 | Zbl 1235.35118
[8] R. Ben Mahmoud, H. Chtioui, Prescribing the Scalar Curvature Problem on Higher-Dimensional Manifolds, Discrete and Continuous Dynamical Systems A, 32 (2012), 1857–1879. http://dx.doi.org/10.3934/dcds.2012.32.1857 | Zbl 1242.58006
[9] R. Ben Mahmoud, H. Chtioui, A. Rigane On the prescribed scalar curvature problem on Sn: the degree zero case, C. R. Acad. Sci. Paris, Ser. I, 350, (2012), 583–586. http://dx.doi.org/10.1016/j.crma.2012.06.012 | Zbl 1247.53032
[10] A. Chang and P. Yang, A perturbation result in prescribing scalar curvature on S n, Duke Math. J. 64 (1991), 27–69. http://dx.doi.org/10.1215/S0012-7094-91-06402-1 | Zbl 0739.53027
[11] H. Chtioui, Prescribing the Scalar Curvature Problem on Three and Four Manifolds, Advanced Nonlinear Studies, 3 (2003), 457–470. | Zbl 1051.53031
[12] H. Chtioui, R. Ben Mahmoud, D. A. Abuzaid, Conformal transformation of metrics on the n-sphere, Nonlinear Analysis: TMA, Volume 82 (2013) pp 66–81. | Zbl 1263.53028
[13] H. Chtioui and A. Rigane, On the prescribed Q-curvature problem on Sn, C. R. Acad. Sci. Paris, Ser. I 348 (2010), 635–638. http://dx.doi.org/10.1016/j.crma.2010.03.018 | Zbl 1193.53101
[14] H. Chtioui and A. Rigane, On the prescribed Q-curvature problem on S n, Journal of Functional Analysis, 261 (2011), 2999–3043. http://dx.doi.org/10.1016/j.jfa.2011.07.017 | Zbl 1233.53007
[15] J. Kazdan and J. Warner, „Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvatur”, Annals of Math.101(1975), p.317–331. http://dx.doi.org/10.2307/1970993 | Zbl 0297.53020
[16] Y.Y. Li, Prescribing scalar curvature on Sn and related topics, Part I, Journal of Differential Equations, 120 (1995), 319–410. http://dx.doi.org/10.1006/jdeq.1995.1115
[17] Y.Y. Li, Prescribing scalar curvature on Sn and related topics, Part II: existence and compactness, Comm. Pure Appl. Math. 49 (1996), 541–579. http://dx.doi.org/10.1002/(SICI)1097-0312(199606)49:6<541::AID-CPA1>3.0.CO;2-A
[18] R. Schoen and Z. Zhang, Prescribed scalar curvature on the n-Sphere, Calc. Var. P.D.E. 4 (1996), 1–25. http://dx.doi.org/10.1007/BF01322307 | Zbl 0843.53037
[19] M. Stuwe, A global compactness result for elliptic boundary value problem involving limiting nonlinearities, Math. Z. 187, (1984), 511–517. http://dx.doi.org/10.1007/BF01174186 | Zbl 0535.35025