We extend a theorem of Kato on similarity for sequences of projections in Hilbert spaces to the case of isomorphic Schauder decompositions in certain Banach spaces. To this end we use ℓψ-Hilbertian and ∞-Hilbertian Schauder decompositions instead of orthogonal Schauder decompositions, generalize the concept of an orthogonal Schauder decomposition to the case of Banach spaces and introduce the class of Banach spaces with Schauder-Orlicz decompositions. Furthermore, we generalize the notions of type, cotype, infratype and M-cotype of a Banach space and study the properties of unconditional Schauder decompositions in Banach spaces possessing certain geometric structure.
@article{bwmeta1.element.doi-10_2478_s11533-014-0441-y, author = {Vitalii Marchenko}, title = {Isomorphic Schauder decompositions in certain Banach spaces}, journal = {Open Mathematics}, volume = {12}, year = {2014}, pages = {1714-1732}, zbl = {1308.47011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0441-y} }
Vitalii Marchenko. Isomorphic Schauder decompositions in certain Banach spaces. Open Mathematics, Tome 12 (2014) pp. 1714-1732. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0441-y/
[1] Adduci J., Mityagin B., Eigensystem of an L 2-perturbed harmonic oscillator is an unconditional basis, Cent. Eur. J. Math., 2012, 10(2), 569–589 http://dx.doi.org/10.2478/s11533-011-0139-3 | Zbl 1259.47059
[2] Adduci J., Mityagin B., Root system of a perturbation of a selfadjoint operator with discrete spectrum, Integral Equations Operator Theory, 2012, 73(2), 153–175 http://dx.doi.org/10.1007/s00020-012-1967-7 | Zbl 1294.47022
[3] Ahmad K., A note on equivalence of sequences of subspaces in Banach spaces, An. Stiint. Univ. ”Ovidius” Constanta Ser. Mat., 1989, 27, 9–12
[4] Allexandrov G., Kutzarova D., Plichko A., A separable space with no Schauder decomposition, Proc. Amer. Math. Soc., 1999, 127(9), 2805–2806 http://dx.doi.org/10.1090/S0002-9939-99-05370-8 | Zbl 0921.46007
[5] Bari N.K., Biorthogonal systems and bases in Hilbert space, Moskov. Gos. Univ. Učenye Zapiski. Matematika, 1951, 148(4), 69–107 (in Russian)
[6] Bilalov B.T., Veliev S.G., Some Questions of Bases, Elm, Baku, 2010 (in Russian) | Zbl 1149.34352
[7] Bonet J., Ricker W.J., Schauder decompositions and the Grothendieck and Dunford-Pettis properties in Köthe echelon spaces of infinite order, Positivity, 2007, 11(1), 77–93 http://dx.doi.org/10.1007/s11117-006-2014-1 | Zbl 1131.46005
[8] Chadwick J.J.M., Cross R.W., Schauder decompositions in non-separable Banach spaces, Bull. Aust. Math. Soc., 1972, 6(1), 133–144 http://dx.doi.org/10.1017/S0004972700044336 | Zbl 0221.46018
[9] Clark C., On relatively bounded perturbations of ordinary differential operators, Pacific J. Math., 1968, 25(1), 59–70 http://dx.doi.org/10.2140/pjm.1968.25.59 | Zbl 0185.23101
[10] Clement P., De Pagter B., Sukochev F.A., Witvliet H., Schauder decompositions and multiplier theorems, Studia Math., 2000, 138(2), 135–163 | Zbl 0955.46004
[11] Curtain R.F., Zwart H.J., An Introduction to Infinite-Dimensional Linear Systems Theory, Texts in Applied Mathematics, Volume 21, Springer-Verlag, New-York, 1995 http://dx.doi.org/10.1007/978-1-4612-4224-6 | Zbl 0839.93001
[12] Davis W.J., Schauder decompositions in Banach spaces, Bull. Amer. Math. Soc., 1968, 74(6), 1083–1085 http://dx.doi.org/10.1090/S0002-9904-1968-12054-3 | Zbl 0167.12803
[13] De la Rosa M., Frerick L., Grivaux S., Peris A., Frequent hypercyclicity, chaos, and unconditional Schauder decompositions, Israel J. Math., 2012, 190(1), 389–399 http://dx.doi.org/10.1007/s11856-011-0210-6 | Zbl 1258.47012
[14] De Pagter B., Ricker W.J., Products of commuting Boolean algebras of projections and Banach space geometry, Proc. Lond. Math. Soc. (3), 2005, 91(3), 483–508 http://dx.doi.org/10.1112/S0024611505015303 | Zbl 1093.46010
[15] Djakov P., Mityagin B., Criteria for existence of Riesz bases consisting of root functions of Hill and 1D Dirac operators, J. Funct. Anal., 2012, 263(8), 2300–2332 http://dx.doi.org/10.1016/j.jfa.2012.07.003 | Zbl 1263.34121
[16] Fage M.K., Idempotent operators and their rectification, Dokl. Akad. Nauk, 1950, 73, 895–897 (in Russian)
[17] Fage M.K., The rectification of bases in Hilbert space, Dokl. Akad. Nauk, 1950, 74, 1053–1056 (in Russian)
[18] Gelfand I.M., A remark on N.K. Bari’s paper “Biorthogonal systems and bases in Hilbert space”, Moskov. Gos. Univ. Učenye Zapiski. Matematika, 1951, 148(4), 224–225 (in Russian)
[19] Gohberg I.C., Krein M.G., Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space, Transl. Math. Monogr., 18, American Mathematical Society, Providence, Rhode Island, 1969 | Zbl 0181.13504
[20] Grinblyum M.M., On the representation of a space of type B in the form of a direct sum of subspaces, Dokl. Akad. Nauk, 1950, 70, 749–752 (in Russian)
[21] Gurarii V.I., Gurarii N.I., Bases in uniformly convex and uniformly smooth Banach spaces, Izv. Ross. Akad. Nauk Ser. Mat., 1971, 35(1), 210–215 (in Russian) | Zbl 0199.43902
[22] Haagerup U., The best constants in the Khintchine inequality, Studia Math., 1982, 70, 231–283 | Zbl 0501.46015
[23] Haase M., A decomposition theorem for generators of strongly continuous groups on Hilbert spaces, J. Operator Theory, 2004, 52, 21–37. | Zbl 1104.47042
[24] Haase M., The Functional Calculus for Sectorial Operators, Oper. Theory Adv. Appl., vol. 169, Birkhäuser, Basel, 2006. http://dx.doi.org/10.1007/3-7643-7698-8
[25] Hughes E., Perturbation theorems for relative spectral problems, Canad. J. Math., 1972, 24(1), 72–81 http://dx.doi.org/10.4153/CJM-1972-009-8 | Zbl 0255.47023
[26] Jain P.K., Ahmad K., Maskey S.M., Domination and equivalence of sequences of subspaces in dual spaces, Czechoslovak Math. J., 1986, 36(3), 351–357 http://dx.doi.org/10.1007/BF01597835 | Zbl 0627.46012
[27] Jain P.K., Ahmad K., Schauder decompositions and best approximations in Banach spaces, Port. Math., 1987, 44(1), 25–39 | Zbl 0636.41016
[28] Jain P.K., Ahmad K., Unconditional Schauder decompositions and best approximations in Banach spaces, Indian J. Pure Appl. Math., 1981, 12(12), 1456–1467 | Zbl 0501.46014
[29] Johnson W.B., Finite-dimensional Schauder decompositions in π λ and dual π λ spaces, Illinois J. Math., 1970, 14(4), 642–647
[30] Johnson W.B., Lindenstrauss J., Handbook of the Geometry of Banach Spaces, Volume 1, Elsevier, 2001
[31] Johnson W.B., Lindenstrauss J., Handbook of the Geometry of Banach Spaces, Volume 2, Elsevier, 2003
[32] Kadets M.I, Kadets V.M., Series in Banach Spaces, Conditional and Unconditional Convergence, Birkhäuser, Berlin, 1997 | Zbl 0876.46009
[33] Kato T., Perturbation Theory for Linear Operators, 2nd ed. (reprint), Classics Math., Springer, Berlin, 1995
[34] Kato T., Similarity for sequences of projections, Bull. Amer. Math. Soc., 1967, 73(6), 904–905 http://dx.doi.org/10.1090/S0002-9904-1967-11836-6 | Zbl 0156.38103
[35] Köthe G., Toeplitz O., Linear Räume mit unendlich vielen Koordinaten und Ringe unendlicher Matrizen, J. Reine Angew. Math., 1934, 171, 193–226 | Zbl 0009.25704
[36] Krein M., Milman D., Rutman M., On a property of a basis in a Banach space, Comm. Inst. Sci. Math. Mec. Univ. Kharkoff [Zapiski Inst. Mat. Mech.], 1940, 16(4), 106–110 (in Russian, with English summary) | Zbl 0023.13105
[37] Lindenstrauss J., Tzafriri L., Classical Banach Spaces I and II, Reprint of the 1977, 1979 ed., Springer-Verlag, Berlin, 1996 | Zbl 0403.46022
[38] Lorch E.R., Bicontinuous linear transformations in certain vector spaces, Bull. Amer. Math. Soc., 1939, 45, 564–569 http://dx.doi.org/10.1090/S0002-9904-1939-07035-3 | Zbl 0022.05302
[39] Marcus A.S., A basis of root vectors of a dissipative operator, Dokl. Akad. Nauk, 1960, 132(3), 524–527 (in Russian)
[40] Marcus A.S., Introduction to the Spectral Theory of Polynomial Operator Pencils, Transl. Math. Monogr., 71, American Mathematical Society, Providence, Rhode Island, 1988
[41] Mityagin B., Siegl P., Root system of singular perturbations of the harmonic oscillator type operators, preprint available at http://arxiv.org/abs/1307.6245 | Zbl 1330.47023
[42] Orlicz W., Über die Divergenz von allgemeinen Orthogonalreihen & Über unbedingte Convergenz in Funktionraümen, Studia Math., 1933, 4, 27–37
[43] Rabah R., Sklyar G.M., Rezounenko A.V., Generalized Riesz basis property in the analysis of neutral type systems, C. R. Math. Acad. Sci. Paris, Ser. I, 2003, 337, 19–24 http://dx.doi.org/10.1016/S1631-073X(03)00251-6 | Zbl 1035.34092
[44] Rabah R., Sklyar G.M., Rezounenko A.V., Stability analysis of neutral type systems in Hilbert space, J. Differential Equations, 2005, 214, 391–428 http://dx.doi.org/10.1016/j.jde.2004.08.001 | Zbl 1083.34058
[45] Rabah R., Sklyar G.M., The analysis of exact controllability of neutral-type systems by the moment problem approach, SIAM J. Control Optim., 2007, 46(6), 2148–2181 http://dx.doi.org/10.1137/060650246 | Zbl 1149.93011
[46] Retherford J.R., Basic sequences and the Paley-Wiener criterion, Pacific J. Math., 1964, 14, 1019–1027 http://dx.doi.org/10.2140/pjm.1964.14.1019 | Zbl 0182.16502
[47] Retherford J.R., Some remarks on Schauder bases of subspaces, Rev. Roumaine Math. Pures Appl., 1966, 11, 787–792 | Zbl 0149.08902
[48] Sanders B.L., Decompositions and reflexivity in Banach spaces, Proc. Amer. Math. Soc., 1965, 16(2), 204–208 http://dx.doi.org/10.1090/S0002-9939-1965-0172092-8 | Zbl 0144.16802
[49] Sanders B.L., On the existence of [Schauder] decompositions in Banach spaces, Proc. Amer. Math. Soc., 1965, 16(5), 987–990 | Zbl 0134.11002
[50] Singer I., Bases in Banach Spaces I, Springer-Verlag, Berlin, 1970 http://dx.doi.org/10.1007/978-3-642-51633-7
[51] Singer I., Bases in Banach Spaces II, Springer-Verlag, Berlin, 1981 http://dx.doi.org/10.1007/978-3-642-67844-8 | Zbl 0467.46020
[52] Singer I., On Banach spaces with symmetric bases, Rev. Roumaine Math. Pures Appl., 1961, 6, 159–166 (in Russian) | Zbl 0107.32602
[53] Vizitei V.N., Marcus A.S., Convergence of multiple decompositions in a system of eigenelements and adjoint vectors of an operator pencil, Mat. Sb. (N.S.), 1965, 66(108):2, 287–320 (in Russian)
[54] Vizitei V.N., On the stability of bases of subspaces in a Banach space, In: Studies on Algebra and Mathematical Analysis, Moldov. Acad. Sci., Kartja Moldovenjaska, Chişinău, 1965, 32–44 (in Russian)
[55] Wermer J., Commuting spectral measures on Hilbert space, Pacific J. Math., 1954, 4, 355–361 http://dx.doi.org/10.2140/pjm.1954.4.355 | Zbl 0056.34701
[56] Wyss C., Riesz bases for p-subordinate perturbations of normal operators, J. Funct. Anal., 2010, 258(1), 208–240 http://dx.doi.org/10.1016/j.jfa.2009.09.001 | Zbl 1185.47014
[57] Zwart H., Riesz basis for strongly continuous groups, J. Differential Equations, 2010, 249, 2397–2408 http://dx.doi.org/10.1016/j.jde.2010.07.020 | Zbl 1203.47020