Some superconvergence results of high-degree finite element method for a second order elliptic equation with variable coefficients
Xiaofei Guan ; Mingxia Li ; Wenming He ; Zhengwu Jiang
Open Mathematics, Tome 12 (2014), p. 1733-1747 / Harvested from The Polish Digital Mathematics Library

In this paper, some superconvergence results of high-degree finite element method are obtained for solving a second order elliptic equation with variable coefficients on the inner locally symmetric mesh with respect to a point x 0 for triangular meshes. By using of the weak estimates and local symmetric technique, we obtain improved discretization errors of O(h p+1 |ln h|2) and O(h p+2 |ln h|2) when p (≥ 3) is odd and p (≥ 4) is even, respectively. Meanwhile, the results show that the combination of the weak estimates and local symmetric technique is also effective for superconvergence analysis of the second order elliptic equation with variable coefficients.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:269225
@article{bwmeta1.element.doi-10_2478_s11533-014-0440-z,
     author = {Xiaofei Guan and Mingxia Li and Wenming He and Zhengwu Jiang},
     title = {Some superconvergence results of high-degree finite element method for a second order elliptic equation with variable coefficients},
     journal = {Open Mathematics},
     volume = {12},
     year = {2014},
     pages = {1733-1747},
     zbl = {1302.65238},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0440-z}
}
Xiaofei Guan; Mingxia Li; Wenming He; Zhengwu Jiang. Some superconvergence results of high-degree finite element method for a second order elliptic equation with variable coefficients. Open Mathematics, Tome 12 (2014) pp. 1733-1747. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0440-z/

[1] Brenner S.C., Scott L.R., The Mathematical Theory of Finite Element Methods, Texts Appl. Math., 15, Springer-Verlag, New York, 1994 | Zbl 0804.65101

[2] Ciarlet P. G., The Finite Element Method for Ellptic Problem, North-Holland, Amsterdam, 1978

[3] Guan X.F., Li M.X., Chen S.C., Some numerical quadrature schemes of a non-conforming quadrilateral finite element, Acta Math. Appl. Sin., 2012, 28, 117–126 http://dx.doi.org/10.1007/s10255-012-0127-9

[4] He W.M., Chen W.Q., Zhu Q.D., Local superconvergence of the derivative for tensor-product block FEM, Numer. Methods Partial Differential Equations, 2012, 28, 457–475 http://dx.doi.org/10.1002/num.20628 | Zbl 1244.65158

[5] He W.M., Cui J.Z., The local superconvergence of the linear finite element method for the Poisson problem, Numer. Methods Partial Differential Equations (in press), DOI: 10.1002/num.21842 | Zbl 1297.65133

[6] Krasovskiĭ J.P., Isolation of singularities of the Green’s function, Math. USSR Izv., 1967, 1, 935–966 http://dx.doi.org/10.1070/IM1967v001n05ABEH000594

[7] Lin Q., Lin J., Finite Element Methods: Accuracy and Improvement, Science Press, Beijing, 2006 (in Chinese)

[8] Lin Q., Yan N., Construction and Analysis of Finite Element Methods, Hebei University Press, 1996 (in Chinese)

[9] Lin Q., Zhang S., Yan N., An acceleration method for integral equations by using interpolation post-processing, Adv. Comp. Math., 1998, 9, 117–128 http://dx.doi.org/10.1023/A:1018925103993 | Zbl 0920.65087

[10] Lin Q., Zhou J., Superconvergence in high-order Galerkin finite element methods, Comput. Method Appl. Mech. Engrg., 2007, 196, 3779–3784 http://dx.doi.org/10.1016/j.cma.2006.10.027 | Zbl 1173.65370

[11] Lin Q., Zhu Q., The Preprocessing and Postprocessing for the Finite Element Methods, Scientific and Technical Publishers, Shanghai, 1994 (in Chinese)

[12] Mao S.P., Chen S.C., Shi D.Y., Convergence and superconvergence of a nonconforming finite element on anisotropic meshes, Int. J. Numer. Anal. Model., 2007, 4, 16–38 | Zbl 1122.65098

[13] Mao S.P., Chen S.C., Sun H., A quadrilateral, anisotropic, superconvergent, nonconforming double set parameter element, Appl. Numer. Math., 2006, 56, 937–961 http://dx.doi.org/10.1016/j.apnum.2005.07.005 | Zbl 1094.65120

[14] Mao S.P., Shi Z.-C., High accuracy analysis of two nonconforming plate elements, Numer. Math., 2009, 111, 407–443 http://dx.doi.org/10.1007/s00211-008-0190-6 | Zbl 1155.74045

[15] Meng L., Zhu Q., The ultraconvergence of derivative for bicubic finite element, Comput. Method Appl. Mech. Engrg., 2007, 196, 3771–3778 http://dx.doi.org/10.1016/j.cma.2006.10.026 | Zbl 1173.65358

[16] Schatz A.H., Sloan I.H., Wahlbin L.B., Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point, SIAM J. Numer. Anal., 1996, 33, 505–521 http://dx.doi.org/10.1137/0733027 | Zbl 0855.65115

[17] Zhang Z., Ultraconvergence of the patch recovery technique, Math. Comp., 1996, 65, 1431–1437 http://dx.doi.org/10.1090/S0025-5718-96-00782-X | Zbl 0853.65116

[18] Zhang Z., Ultraconvergence of the patch recovery technique(II), Math. Comp., 2000, 69, 141–158 http://dx.doi.org/10.1090/S0025-5718-99-01205-3 | Zbl 0936.65132

[19] Zhang Z., Lin R., Ultraconvergence of ZZ patch recovery at mesh symmetry points, Numer. Math., 2003, 95, 781–801 http://dx.doi.org/10.1007/s00211-003-0457-x | Zbl 1045.65096

[20] Zhang Z., Zhu J., Analysis of the superconvergence patch recovery techniques and a posteriori error estimator in the finite element method(I), Comput. Methods Appl. Mech. Engrg., 1995, 123, 173–187 http://dx.doi.org/10.1016/0045-7825(95)00780-5

[21] Zhu Q., Superconvergence and Postprocessing Theory of Finite Element Theory, Science Press, 2008 (in Chinese)

[22] Zhu Q., Meng L., The derivative ultraconvergence for quadratic triangular finite elements, J. Comput. Math., 2004, 22, 857–864 | Zbl 1068.65124

[23] Zhu Q., Meng L., New construction and ultraconvergence of derivative recovery operator for odd-degree rectangular elements, Sci. China Math., 2004, 47, 940–949 http://dx.doi.org/10.1360/02ys0329 | Zbl 1079.65549

[24] Zhu Q., Zhao Q., SPR technique and finite element correction, Numer. Math., 2003, 96, 185–196 http://dx.doi.org/10.1007/s00211-003-0474-9 | Zbl 1053.65060