On the frame of the unit ball of Banach spaces
Ryotaro Tanaka
Open Mathematics, Tome 12 (2014), p. 1700-1713 / Harvested from The Polish Digital Mathematics Library

The notion of the frame of the unit ball of Banach spaces was introduced to construct a new calculation method for the Dunkl-Williams constant. In this paper, we characterize the frame of the unit ball by using k-extreme points and extreme points of the unit ball of two-dimensional subspaces. Furthermore, we show that the frame of the unit ball is always closed, and is connected if the dimension of the space is not less than three. As infinite dimensional examples, the frame of the unit balls of c 0 and ℓ p are determined.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:269791
@article{bwmeta1.element.doi-10_2478_s11533-014-0437-7,
     author = {Ryotaro Tanaka},
     title = {On the frame of the unit ball of Banach spaces},
     journal = {Open Mathematics},
     volume = {12},
     year = {2014},
     pages = {1700-1713},
     zbl = {1311.46019},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0437-7}
}
Ryotaro Tanaka. On the frame of the unit ball of Banach spaces. Open Mathematics, Tome 12 (2014) pp. 1700-1713. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0437-7/

[1] Aizpuru A., García-Pacheco F. J., Some questions about rotundity and renormings in Banach spaces, J. Aust. Math. Soc., 2005, 79(1), 131–140 http://dx.doi.org/10.1017/S144678870000937X | Zbl 1089.46011

[2] Aizpuru A., García-Pacheco F. J., A short note about exposed points in real Banach spaces, Acta Math. Sci. Ser. B Engl. Ed., 2008, 28(4), 797–800 http://dx.doi.org/10.1016/S0252-9602(08)60080-6 | Zbl 1199.46037

[3] Asplund E., A k-extreme point is the limit of k-exposed points, Israel J. Math., 1963, 1, 161–162 http://dx.doi.org/10.1007/BF02759703 | Zbl 0125.11201

[4] Birkhoff G., Orthogonality in linear metric spaces, Duke Math. J., 1935, 1(2), 169–172 http://dx.doi.org/10.1215/S0012-7094-35-00115-6 | Zbl 0012.30604

[5] Day M.M., Polygons circumscribed about closed convex curves, Trans. Amer. Math. Soc., 1947, 62, 315–319 http://dx.doi.org/10.1090/S0002-9947-1947-0022686-9 | Zbl 0034.25301

[6] Day M.M., Some characterizations of inner-product spaces, Trans. Amer. Math. Soc., 1947, 62, 320–337 http://dx.doi.org/10.1090/S0002-9947-1947-0022312-9 | Zbl 0034.21703

[7] García-Pacheco F. J., On exposed faces and smoothness, Bull. Braz. Math. Soc. (N.S.), 2009, 40(2), 237–245 http://dx.doi.org/10.1007/s00574-009-0011-2 | Zbl 1185.46006

[8] García-Pacheco F. J., On minimal exposed faces, Ark. Mat., 2011, 49(2), 325–333 http://dx.doi.org/10.1007/s11512-010-0123-3 | Zbl 1267.46019

[9] James R.C., Orthogonality in normed linear spaces, Duke Math. J., 1945, 12, 291–302 http://dx.doi.org/10.1215/S0012-7094-45-01223-3 | Zbl 0060.26202

[10] James R.C., Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc., 1947, 61, 265–292 http://dx.doi.org/10.1090/S0002-9947-1947-0021241-4 | Zbl 0037.08001

[11] James R.C., Inner products in normed linear spaces, Bull. Amer. Math. Soc., 1947, 53, 559–566 http://dx.doi.org/10.1090/S0002-9904-1947-08831-5 | Zbl 0041.43701

[12] Kato M., Saito K.-S., Tamura T., Sharp triangle inequality and its reverse in Banach spaces, Math. Inequal. Appl., 2007, 10(2), 451–460 | Zbl 1121.46019

[13] Liu Z., Zhuang Y.D., K-rotund complex normed linear spaces, J. Math. Anal. Appl., 1990, 146(2), 540–545 http://dx.doi.org/10.1016/0022-247X(90)90323-8 | Zbl 0764.46013

[14] Megginson R.E., An Introduction to Banach Space Theory, Springer-Verlag, New York, 1998 http://dx.doi.org/10.1007/978-1-4612-0603-3 | Zbl 0910.46008

[15] Mizuguchi H., Saito K.-S., Tanaka R., On the calculation of the Dunkl-Williams constant of normed linear spaces, Cent. Eur. J. Math., 2013, 11(7), 1212–1227. http://dx.doi.org/10.2478/s11533-013-0238-4 | Zbl 1283.46013

[16] Singer I., On the set of the best approximations of an element in a normed linear space, Rev. Math. Pures. Appl., 1960, 5, 383–402 | Zbl 0122.34801

[17] Singer I., Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, New York-Berlin, 1970 http://dx.doi.org/10.1007/978-3-662-41583-2

[18] Zhuang Y.D., On k-rotund complex normed linear spaces, J. Math. Anal. Appl., 1993, 174(1), 218–230 http://dx.doi.org/10.1006/jmaa.1993.1112