We find precise small deviation asymptotics with respect to the Hilbert norm for some special Gaussian processes connected to two regression schemes studied by MacNeill and his coauthors. In addition, we also obtain precise small deviation asymptotics for the detrended Brownian motion and detrended Slepian process.
@article{bwmeta1.element.doi-10_2478_s11533-014-0436-8, author = {Alisa Kirichenko and Ya. Nikitin}, title = {Precise small deviations in L 2 of some Gaussian processes appearing in the regression context}, journal = {Open Mathematics}, volume = {12}, year = {2014}, pages = {1674-1686}, zbl = {1322.60036}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0436-8} }
Alisa Kirichenko; Ya. Nikitin. Precise small deviations in L 2 of some Gaussian processes appearing in the regression context. Open Mathematics, Tome 12 (2014) pp. 1674-1686. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0436-8/
[1] Adler, R. J. An introduction to continuity, extrema, and related topics for general Gaussian processes. IMS Lect. Notes, 12 (1990), Hayword. | Zbl 0747.60039
[2] Ai, X., Li, W. V., Liu, G. Karhunen-Loève expansions for detrended Brownian motion. Statist. & Probab. Lett., 2012, 82(7), 1235–1241. http://dx.doi.org/10.1016/j.spl.2012.03.007 | Zbl 1259.60093
[3] Beghin, L., Nikitin, Ya. Yu., Orsingher, E. Exact small ball constants for some Gaussian processes under the L 2-norm. Journ. of Math. Sci., 2005, 128(1), 2493–2502. http://dx.doi.org/10.1007/s10958-005-0197-9 | Zbl 1078.60028
[4] Berlinet, A. F., Servien, R. Necessary and sufficient condition for the existence of a limit distribution of the nearestneighbour density estimator. Journ. of Nonparam. Statist., 2011, 23(3), 633–643. http://dx.doi.org/10.1080/10485252.2011.567334 | Zbl 1284.62248
[5] Dunker T., Lifshits M. A., Linde W. Small deviations of sums of independent variables. In: High Dimensional Probability. Progress in Probability, 1998, 43, Birkhaåuser, Basel, 59–74. http://dx.doi.org/10.1007/978-3-0348-8829-5_4 | Zbl 0902.60039
[6] Fatalov, V. R. Ergodic means for large values of T and exact asymptotics of small deviations for a multi-dimensional Wiener process. Izvestiya: Mathematics, 2013, 77(6), 1224–1259. http://dx.doi.org/10.1070/IM2013v077n06ABEH002675 | Zbl 1288.60030
[7] Fatalov, V. R. Small deviations for two classes of Gaussian stationary processes and L p-functionals, 0 < p ≤ ∞. Problems Inform. Transmission, 2010, 46(1), 62–85. http://dx.doi.org/10.1134/S0032946010010060 | Zbl 1205.93140
[8] Ferraty F., Vieu Ph. Nonparametric functional data analysis. Berlin: Springer, 2006. | Zbl 1119.62046
[9] Fill, J. A., Torcaso, F. Asymptotic analysis via Mellin transforms for small deviations in L 2-norm of integrated Brownian sheets. Probab. Theory Relat. Fields, 2003, 130(2), 259–288. | Zbl 1052.60027
[10] Gao, F., Hannig, J., Lee, T. -Y., Torcaso, F. Laplace transforms via Hadamard factorization with applications to small ball probabilities. Electr. Journ. of Probab., 2003, 8(13), 1–20. | Zbl 1064.60061
[11] Gao, F., Hannig, J., Torcaso, F., Comparison Theorems for Small Deviations of random series. Electr. Journ. of Probab. 2003, 8(1), 1–17. | Zbl 1065.60040
[12] Gao, F., Hannig, J., Torcaso, F. Integrated Brownian motions and Exact L 2-small balls. Ann. of Probab. 2003, 31(3), 1320–1337. http://dx.doi.org/10.1214/aop/1055425782 | Zbl 1047.60030
[13] Gao, F., Hannig, J., Lee, T. -Y., Torcaso, F. Exact L 2-small balls of Gaussian processes. Journ. of Theoret. Probab., 2004, 17(2), 503–520. http://dx.doi.org/10.1023/B:JOTP.0000020705.28185.4c | Zbl 1049.60028
[14] Jandhyala, V. K., Jiang, P. L. Eigenvalues of a Fredholm integral operator and applications to problems of statistical inference. Journ. Integr. Eq. Appl., 1996, 8(4), 413–427. http://dx.doi.org/10.1216/jiea/1181075971 | Zbl 0885.45001
[15] Jandhyala, V. K., MacNeill, I. B. Residual partial sum limit process for regression models with applications to detecting parameter changes at unknown times. Stoch. Proc. Appl., 1989, 33(2), 309–323. http://dx.doi.org/10.1016/0304-4149(89)90045-8 | Zbl 0679.62056
[16] Kharinski, P. A., Nikitin, Ya. Yu. Sharp small deviation asymptotics in L 2-norm for a class of Gaussian processes. Journ. Math. Sci., 2006, 133(3), 1328–1332. http://dx.doi.org/10.1007/s10958-006-0042-9
[17] Li, W. V. Comparison results for the lower tail of Gaussian seminorms. Journ. Theor. Prob., 1992, 5(1), 1–31. http://dx.doi.org/10.1007/BF01046776 | Zbl 0743.60009
[18] Li W. V., Shao Q. M. Gaussian processes: inequalities, small ball probabilities and applications. Stochastic Processes: Theory and Methods. Amsterdam: North-Holland, 2001, 533–597. (Handbook Statist., v. 19.) | Zbl 0987.60053
[19] Lifshits, M. A. Gaussian Random Functions. Dordrecht: Kluwer, 1995. http://dx.doi.org/10.1007/978-94-015-8474-6
[20] Lifshits, M. Lectures on Gaussian processes. SpringerBriefs in Mathematics, Springer, 2012. http://dx.doi.org/10.1007/978-3-642-24939-6
[21] Lifshits, M. A. Bibliography on small deviation probabilities, 2014. Available at http://www.proba.jussieu.fr/pageperso/smalldev/biblio.pdf.
[22] MacNeill, I. B. Properties of sequences of partial sums of polynomial regression residuals with applications to tests for change of regression at unknown times. Ann. Stat., 1978, 6(2), 422–433. http://dx.doi.org/10.1214/aos/1176344133 | Zbl 0375.62064
[23] Nazarov, A. I. On the sharp constant in the small ball asymptotics of some Gaussian processes under L 2-norm. Journ. of Math. Sci., 2003, 117(3), 4185–4210. http://dx.doi.org/10.1023/A:1024868604219
[24] Nazarov, A. I. Exact L 2-small ball asymptotics of Gaussian processes and the spectrum of boundary-value problems. Journ. of Theor. Prob., 2009, 22(3), 640–665. http://dx.doi.org/10.1007/s10959-008-0173-7 | Zbl 1187.60025
[25] Nazarov, A. I. On a set of transformations of Gaussian random functions. Theor. Probab. Appl., 2009, 54(2), 203–216. http://dx.doi.org/10.1137/S0040585X97984103 | Zbl 1214.60011
[26] Nazarov, A. I., Nikitin, Ya. Yu. Exact L 2-small ball behavior of integrated Gaussian processes and spectral asymptotics of boundary value problems. Probab. Theor. Relat. Fields, 2004, 129(4), 469–494. http://dx.doi.org/10.1007/s00440-004-0337-z | Zbl 1051.60041
[27] Nikitin, Ya. Yu., Pusev, R. S. Exact Small Deviation Asymptotics for Some Brownian Functionals. Theor. Probab. Appl., 2013, 57(1), 60–81. http://dx.doi.org/10.1137/S0040585X97985790 | Zbl 1278.60072
[28] Slepian, D. First passage time for a particular Gaussian process. Ann. Math. Stat., 1961, 32(2), 610–612. http://dx.doi.org/10.1214/aoms/1177705068 | Zbl 0113.12403
[29] Titchmarsh, E. C. The theory of functions. 2nd ed. London: Oxford University Press, 1939. | Zbl 0022.14602
[30] van der Vaart A. W., van Zanten H. Rates of contraction of posterior distributions based on Gaussian process priors. Ann. Statist., 2008, 36(3), 1435–1463. http://dx.doi.org/10.1214/009053607000000613 | Zbl 1141.60018