Multivalued backward stochastic differential equations with time delayed generators
Bakarime Diomande ; Lucian Maticiuc
Open Mathematics, Tome 12 (2014), p. 1624-1637 / Harvested from The Polish Digital Mathematics Library

Our aim is to study the following new type of multivalued backward stochastic differential equation: -dYt+φYtdtFt,Yt,Zt,Yt,Ztdt+ZtdWt,0tT,YT=ξ, where ∂φ is the subdifferential of a convex function and (Y t, Z t):= (Y(t + θ), Z(t + θ))θ∈[−T,0] represent the past values of the solution over the interval [0, t]. Our results are based on the existence theorem from Delong Imkeller, Ann. Appl. Probab., 2010, concerning backward stochastic differential equations with time delayed generators.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:269286
@article{bwmeta1.element.doi-10_2478_s11533-014-0434-x,
     author = {Bakarime Diomande and Lucian Maticiuc},
     title = {Multivalued backward stochastic differential equations with time delayed generators},
     journal = {Open Mathematics},
     volume = {12},
     year = {2014},
     pages = {1624-1637},
     zbl = {1307.60075},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0434-x}
}
Bakarime Diomande; Lucian Maticiuc. Multivalued backward stochastic differential equations with time delayed generators. Open Mathematics, Tome 12 (2014) pp. 1624-1637. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0434-x/

[1] Haïm Brézis, Opérateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert, North-Holland, Amsterdam, 1973. | Zbl 0252.47055

[2] Łukasz Delong, Applications of time-delayed backward stochastic differential equations to pricing, hedging and portfolio management, preprint, 2011 (http://arxiv.org/abs/1005.4417).

[3] Łukasz Delong, Peter Imkeller, Backward stochastic differential equations with time delayed generators - results and counterexamples, The Annals of Applied Probability 20 (2010), no. 4, 1512–1536. http://dx.doi.org/10.1214/09-AAP663 | Zbl 1202.34144

[4] Łukasz Delong, Peter Imkeller, On Malliavin’s differentiability of BSDE with time delayed generators driven by Brownian motions and Poisson random measures, Stochastic Process. Appl. 120 (2010), no. 9, 1748–1775. http://dx.doi.org/10.1016/j.spa.2010.05.001 | Zbl 1200.60041

[5] Gonçalo dos Reis, Anthony Réveillac, Jianing Zhang, FBSDEs with time delayed generators: Lp-solutions, differentiability, representation formulas and path regularity, Stochastic Process. Appl. 121 (2011), no. 9, 2114–2150. http://dx.doi.org/10.1016/j.spa.2011.05.002 | Zbl 1255.60090

[6] Nicole El Karoui, Christophe Kapoudjian, Etienne Pardoux, Shige Peng, Marie-Claire Quenez, Reflected solutions of backward SDE’s and related obstacle problems for PDE’s, Ann.Probab. 25 (1997), no. 2, 702–737. http://dx.doi.org/10.1214/aop/1024404416 | Zbl 0899.60047

[7] Lucian Maticiuc, Aurel Răşcanu, A stochastic approach to a multivalued Dirichlet-Neumann problem, Stochastic Process. Appl. 120 (2010), no. 6, 777–800. http://dx.doi.org/10.1016/j.spa.2010.02.002 | Zbl 1195.35192

[8] Lucian Maticiuc, Aurel Răşcanu, Backward Stochastic Variational Inequalities on Random Interval, accepted for publication in Bernoulli, 2014 (http://arxiv.org/abs/1112.5792). | Zbl 1332.60085

[9] Lucian Maticiuc, Eduard Rotenstein, Numerical schemes for multivalued backward stochastic differential systems, Central European Journal of Mathematics 10 (2012), no. 2, 693–702. http://dx.doi.org/10.2478/s11533-011-0131-y | Zbl 1257.65006

[10] Etienne Pardoux, Shige Peng, Adapted solution of a backward stochastic differential equation, Systems Control Lett. 14 (1990), no. 1, 55–61. http://dx.doi.org/10.1016/0167-6911(90)90082-6

[11] Etienne Pardoux, Shige Peng, Backward SDE’s and quasilinear parabolic PDE’s, Stochastic PDE and Their Applications (B.L. Rozovskii, R.B. Sowers eds.), 200–217, LNCIS 176, Springer (1992).

[12] Etienne Pardoux, Aurel Răşcanu, Backward stochastic differential equations with subdifferential operator and related variational inequalities, Stochastic Process. Appl. 76 (1998), no. 2, 191–215. http://dx.doi.org/10.1016/S0304-4149(98)00030-1 | Zbl 0932.60070

[13] Aurel Răşcanu, Eduard Rotenstein, The Fitzpatrick function-a bridge between convex analysis and multivalued stochastic differential equations, Journal of Convex Analysis 18 (2011), no. 1, 105–138. | Zbl 1210.60070

[14] Qing Zhou, Yong Ren, Reflected backward stochastic differential equations with time delayed generators, Statistics and Probability Letters 82 (2012), no. 5, 979–990. http://dx.doi.org/10.1016/j.spl.2012.02.012 | Zbl 1244.60060