Commutativity of set-valued cosine families
Andrzej Smajdor ; Wilhelmina Smajdor
Open Mathematics, Tome 12 (2014), p. 1871-1881 / Harvested from The Polish Digital Mathematics Library

Let K be a closed convex cone with nonempty interior in a real Banach space and let cc(K) denote the family of all nonempty convex compact subsets of K. If F t: t ≥ 0 is a regular cosine family of continuous additive set-valued functions F t: K → cc(K) such that x ∈ F t(x) for t ≥ 0 and x ∈ K, then FtFs(x)=FsFt(x)fors,t0andxK.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:269624
@article{bwmeta1.element.doi-10_2478_s11533-014-0433-y,
     author = {Andrzej Smajdor and Wilhelmina Smajdor},
     title = {Commutativity of set-valued cosine families},
     journal = {Open Mathematics},
     volume = {12},
     year = {2014},
     pages = {1871-1881},
     zbl = {1309.47048},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0433-y}
}
Andrzej Smajdor; Wilhelmina Smajdor. Commutativity of set-valued cosine families. Open Mathematics, Tome 12 (2014) pp. 1871-1881. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0433-y/

[1] Aghajani M., Nourouzi K., On the regular cosine family of linear correspondences, Aequationes Math. 83 (2012), 215–221 http://dx.doi.org/10.1007/s00010-011-0112-z | Zbl 1257.47006

[2] Edgar G.A., Measure, Topology and Fractal Geometry, Undergrad.Texts Math., Springer-Verlag New York Inc., New York, 1990 http://dx.doi.org/10.1007/978-1-4757-4134-6

[3] Łojasiewicz S., An Introduction to the Theory of Real Functions, Wiley, Chichester - New York - Brisbane - Toronto - Singapore 1988

[4] Mainka-Niemczyk E., Integral representation of set-valued sine families, J. Appl. Anal. 18(2) (2012), 243–258 http://dx.doi.org/10.1515/jaa-2012-0016 | Zbl 1276.26055

[5] Mainka-Niemczyk E., Multivalued second order differential problem, Ann. Univ. Paedagog. Crac. Stud. Math. 11 (2012), 53–67 | Zbl 1298.49024

[6] Mainka-Niemczyk E., Some properties of set-valued sine families, Opuscula Math. 32(1) (2012), 157–168 http://dx.doi.org/10.7494/OpMath.2012.32.1.159 | Zbl 1245.26014

[7] Nikodem K., On concave and midpoint concave set-valued functions, Glasnik Mat. 22(42)(1987), 69–76 | Zbl 0642.39006

[8] Piszczek M., Integral representations of convex and concave set-valued functions, Demonstratio Math. 35 (2002), 727–742 | Zbl 1025.28005

[9] Piszczek M., Second Hukuhara derivative and cosine family of linear set-valued functions, Ann. Acad. Peadagog. Crac. Stud. Math. 5 (2006), 87–98 | Zbl 1156.26308

[10] Piszczek M., On multivalued cosine families, J. Appl. Anal. 14 (2007), 57–76 | Zbl 1131.26019

[11] Piszczek M., On multivalued iteration semigroups, Aequationes Math. 81 (2011), 97–108 http://dx.doi.org/10.1007/s00010-010-0034-1

[12] Sova M., Cosine operator functions, Dissertationes Math. (Rozprawy Mat.) 49 (1966), 1–47

[13] Smajdor A., Iteration of multivalued functions, Prace Naukowe Uniwersytetu Slaskiego w Katowicach Nr 759, Uniwersytet Slaski w Katowicach 1985 | Zbl 0595.20070

[14] Smajdor A., On regular multivalued cosine families, Ann. Math. Sil. 13 (1999), 271–280 | Zbl 0946.39013

[15] Smajdor A., Hukuhara’s derivative and concave iteration semigrups of linear set-valued functions, J. Appl. Anal. 8 (2002), 297–305 http://dx.doi.org/10.1515/JAA.2002.297 | Zbl 1026.39008

[16] Smajdor A., Hukuhara’s differentiable iteration semigrups of linear set-valued functions, Ann. Polon. Math. 83(1) (2004), 1–10 http://dx.doi.org/10.4064/ap83-1-1 | Zbl 1056.39036

[17] Trevis C.C., Webb G.F., Cosine families and abstract nonlinear second order differential equations, Acta Math. Acad. Sci. Hungar. 32(3–4) (1978), 75–96 http://dx.doi.org/10.1007/BF01902205