Another approach to characterizations of generalized triangle inequalities in normed spaces
Tamotsu Izumida ; Ken-Ichi Mitani ; Kichi-Suke Saito
Open Mathematics, Tome 12 (2014), p. 1615-1623 / Harvested from The Polish Digital Mathematics Library

In this paper, we consider a generalized triangle inequality of the following type: x1++xnpx1pμ1++x2pμnforallx1,...,xnX, where (X, ‖·‖) is a normed space, (µ1, ..., µn) ∈ ℝn and p > 0. By using ψ-direct sums of Banach spaces, we present another approach to characterizations of the above inequality which is given by [Dadipour F., Moslehian M.S., Rassias J.M., Takahasi S.-E., Nonlinear Anal., 2012, 75(2), 735–741].

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:269693
@article{bwmeta1.element.doi-10_2478_s11533-014-0432-z,
     author = {Tamotsu Izumida and Ken-Ichi Mitani and Kichi-Suke Saito},
     title = {Another approach to characterizations of generalized triangle inequalities in normed spaces},
     journal = {Open Mathematics},
     volume = {12},
     year = {2014},
     pages = {1615-1623},
     zbl = {1311.46014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0432-z}
}
Tamotsu Izumida; Ken-Ichi Mitani; Kichi-Suke Saito. Another approach to characterizations of generalized triangle inequalities in normed spaces. Open Mathematics, Tome 12 (2014) pp. 1615-1623. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0432-z/

[1] Ansari A.H., Moslehian M.S., Refinements of reverse triangle inequalities in inner product spaces, J. Inequal. Pure Appl. Math., 2005, 6(3), article 64, 12pp. | Zbl 1095.46016

[2] Dadipour F., Moslehian M.S., Rassias J.M., Takahasi S.-E., Characterizations of a generalized triangle inequality in normed spaces, Nonlinear Anal., 2012, 75(2), 735–741 http://dx.doi.org/10.1016/j.na.2011.09.004 | Zbl 1242.46029

[3] Kato M., Saito K.-S., Tamura T., On ψ-direct sums of Banach spaces and convexity, J. Aust. Math. Soc., 2003, 75(3), 413–422 http://dx.doi.org/10.1017/S1446788700008193 | Zbl 1055.46010

[4] Kato M., Saito K.-S., Tamura T., Sharp triangle inequality and its reverse in Banach spaces, Math. Inequal. Appl., 2007, 10(2), 451–460 | Zbl 1121.46019

[5] Maligranda L., Some remarks on the triangle inequality for norms, Banach J. Math. Anal., 2008, 2(2), 31–41 | Zbl 1147.46020

[6] Mitani K.-I., Oshiro S., Saito K.-S., Smoothness of ψ-direct sums of Banach spaces, Math. Ineq. Appl., 2005, 8(1), 147–157 | Zbl 1084.46012

[7] Mitani K.-I., Saito K.-S., On sharp triangle inequalities in Banach spaces II, J. Inequal. Appl., 2010, Art. ID 323609, 17pp.

[8] Mitani K.-I., Saito K.-S., Kato M., Tamura T., On sharp triangle inequalities in Banach spaces, J. Math. Anal. Appl., 2007, 336(2), 1178–1186 http://dx.doi.org/10.1016/j.jmaa.2007.03.036 | Zbl 1127.46015

[9] Nikolova L., Persson L.-E., Varošanec S., The Beckenbach-Dresher inequality in the -direct sums of spaces and related results, J. Inequal. Appl., 2012, 2012:7, 14pp. http://dx.doi.org/10.1186/1029-242X-2012-7 | Zbl 1275.26042

[10] Saito K.-S., Kato M., Takahashi Y., Von Neumann-Jordan constant of absolute normalized norms on ℂ2, J. Math. Anal. Appl., 2000, 244(2), 515–532 http://dx.doi.org/10.1006/jmaa.2000.6727

[11] Saito K.-S., Kato M., Takahashi Y., Absolute norms on ℂn, J. Math. Anal. Appl., 2000, 252(2), 879–905 http://dx.doi.org/10.1006/jmaa.2000.7139

[12] Takahasi S.-E., Rassias J.M., Saitoh S., Takahashi Y., Refined generalizations of the triangle inequality on Banach spaces, Math. Ineq. Appl., 2010, 13(4), 733–741