In the presented work, we study the regularity of solutions to the generalized Navier-Stokes problem up to a C 2 boundary in dimensions two and three. The point of our generalization is an assumption that a deviatoric part of a stress tensor depends on a shear rate and on a pressure. We focus on estimates of the Hausdorff measure of a singular set which is defined as a complement of a set where a solution is Hölder continuous. We use so-called indirect approach to show partial regularity, for dimension 2 we get even an empty set of singular points.
@article{bwmeta1.element.doi-10_2478_s11533-014-0427-9, author = {V\'aclav M\'acha}, title = {Partial regularity of solution to generalized Navier-Stokes problem}, journal = {Open Mathematics}, volume = {12}, year = {2014}, pages = {1460-1483}, zbl = {1303.35058}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0427-9} }
Václav Mácha. Partial regularity of solution to generalized Navier-Stokes problem. Open Mathematics, Tome 12 (2014) pp. 1460-1483. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0427-9/
[1] Amrouche, C., Girault, V., Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czechoslovak Math. J., 44(119), no. 1, 109–140 (1994) | Zbl 0823.35140
[2] Bridgman, P. W., The Physics of High Pressure, MacMillan, New York (1931)
[3] Bulíček, M., Kaplický, P., Incompressible Fluids With Shear Rate and Pressure Dependent Viscosity: Regularity of Steady Planar flows, Discrete Contin. Dyn. Syst. Ser. S 1, no. 1, 41–50 (2008) | Zbl 1153.35314
[4] Bulíček, M., Málek, J., Rajagopal, K. R., Navier’s Slip and Evolutionary Navier-Stokes-like Systems, Indiana University Mathematics Journal, Vol. 56, No.1 (2007) | Zbl 1129.35055
[5] Cutler, W. G., McMickle, R. H., Webb, W., Schiessler, R.W., Study of the Compressions of Several High Molecular Weight Hydrocarbons, J. Chem. Phys. 29, 727–740 (1958) http://dx.doi.org/10.1063/1.1744583
[6] Diening, L., Růžička, M., Schumacher, K., A Decomposition Technique for John Domains, Ann. Acad. Sci. Fenn. Math. 35, no.1, 87–114 (2010) http://dx.doi.org/10.5186/aasfm.2010.3506 | Zbl 1194.26022
[7] Evans, L., C., Partial Differential Equations, Graduate studies in Mathematics 19., American Mathematical Society, Providence (1998)
[8] Franta, M., Málek, J., Rajagopal, K. R., On Steady Flows of Fluids With Pressure- and Shear-dependent Viscosities, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461,no. 2055, 651–670 (2005) http://dx.doi.org/10.1098/rspa.2004.1360 | Zbl 1145.76311
[9] Fučík, S., John, O., Kufner, A., Function Spaces, Noordhoff Internation Publishing, Leyden and Academia, Praha (1997) | Zbl 0364.46022
[10] Giaquinta, M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Mathematics Studies, 105. Princeton University Press (1983) | Zbl 0516.49003
[11] Huy, N. D., Stará, J., On Existence and Regularity of Solutions to a Class of Generalized Stationary Stokes Problem, Comment. Math. Univ. Carolin. 47, no. 2, 241–264 (2006) | Zbl 1150.76010
[12] Huy, N., D., On Existence and Regularity of Solutions to Perturbed Systems of Stokes Type, dissertation thesis, Charles University in Prague (2006)
[13] Kaplický, P., Málek, J., Stará, J., C 1, α Solutions to a Class of Nonlinear Fluids in two Dimensions - Stationary Dirichlet Problem, J. Math. Sci., 109, no. 5, 1867–1893 (2002) http://dx.doi.org/10.1023/A:1014440207817
[14] Kaplický, P., Tichý, J., Boundary Regularity of Flows Under Perfect Slip Boundary Conditions, Cent. Eur. J. Math. 11, no. 7, 1243–1263 (2013) | Zbl 1278.35040
[15] Mácha, V. On a Generalized Stokes Problem, Cent. Eur. J. Math. 9, no. 4, 874–887 (2011) http://dx.doi.org/10.2478/s11533-011-0047-6 | Zbl 1233.35060
[16] Málek, J., Mingione, G., Stará, J., Fluids With Pressure Dependent Viscosity, Partial Regularity of Steady Flows, to appear | Zbl 1101.76021
[17] Málek, J., Mingione, G., Stará, J., Fluids With Pressure Dependent Viscosity, Partial Regularity of Steady Flows, Equadiff 2003, Proceedings of the International Conference of Differential Equations, 380–385 (2005) | Zbl 1101.76021
[18] Málek, J., Nečas, J., Rajagopal, K. R., Global Analysis of the Flows of Fluids with Pressure-Dependent Viscosities, Arch. Rational Mech. Anal. 165, no. 3, 243–269, (2002) http://dx.doi.org/10.1007/s00205-002-0219-4 | Zbl 1022.76011