For a class of asymptotically periodic Schrödinger-Poisson systems with critical growth, the existence of ground states is established. The proof is based on the method of Nehari manifold and concentration compactness principle.
@article{bwmeta1.element.doi-10_2478_s11533-014-0426-x, author = {Hui Zhang and Junxiang Xu and Fubao Zhang and Miao Du}, title = {Ground states for asymptotically periodic Schr\"odinger-Poisson systems with critical growth}, journal = {Open Mathematics}, volume = {12}, year = {2014}, pages = {1484-1499}, zbl = {1300.35033}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0426-x} }
Hui Zhang; Junxiang Xu; Fubao Zhang; Miao Du. Ground states for asymptotically periodic Schrödinger-Poisson systems with critical growth. Open Mathematics, Tome 12 (2014) pp. 1484-1499. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0426-x/
[1] Alves Claudianor O., Souto Marco A.S., Soares Sérgio H.M., Schrödinger-Poisson equations without Ambrosetti-Rabinowitz condition, J. Math. Anal. Appl., 2011, 377(2), 584–592 http://dx.doi.org/10.1016/j.jmaa.2010.11.031 | Zbl 1211.35249
[2] Ambrosetti A., On Schrödinger-Poisson systems, Milan J. Math., 2008, 76(1), 257–274 http://dx.doi.org/10.1007/s00032-008-0094-z | Zbl 1181.35257
[3] Ambrosetti A., Ruiz D., Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 2008, 10(3), 391–404 http://dx.doi.org/10.1142/S021919970800282X | Zbl 1188.35171
[4] Azzollini A., Concentration and compactness in nonlinear Schrödinger-Poisson system with a general nonlinearity, J. Differential Equations, 2010, 249(7), 1746–1763 http://dx.doi.org/10.1016/j.jde.2010.07.007 | Zbl 1197.35096
[5] Azzollini A., Pomponio A., Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 2008, 345(1), 90–108 http://dx.doi.org/10.1016/j.jmaa.2008.03.057 | Zbl 1147.35091
[6] Benci V., Fortunato D., An eigenvalue problem for the Schrödinger-Maxwell equations, Top. Meth. Nonlinear Anal., 1998, 11(2), 283–293 | Zbl 0926.35125
[7] Cerami G., Vaira G., Positive solutions for some nonautonomous Schrödinger-Poisson systems, J. Differential Equations, 2010, 248(3), 521–543 http://dx.doi.org/10.1016/j.jde.2009.06.017 | Zbl 1183.35109
[8] Coclite G.M., A multiplicity result for the nonlinear Schrödinger-Maxwell equations, Commun. Appl. Anal., 2003, 7(2–3), 417–423 | Zbl 1085.81510
[9] D’Aprile T., Mugnai D., Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect., 2004, 134(5), 893–906 http://dx.doi.org/10.1017/S030821050000353X | Zbl 1064.35182
[10] D’Aprile T., Mugnai D., Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 2004, 4(3), 307–322 | Zbl 1142.35406
[11] D’Avenia P., Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations, Adv. Nonlinear Stud., 2002, 2(2), 177–192
[12] D’Avenia P., Pomponio A., Vaira G., Infinitely many positive solutions for a Schrödinger-Poisson system, Appl. Math. Lett., 2011, 24(5), 661–664 http://dx.doi.org/10.1016/j.aml.2010.12.002 | Zbl 1211.35104
[13] He X.M., Multiplicity and concentration of positive solutions for the Schrödinger-Poisson equations, Z. Angew. Math. Phys., 2011, 62(5), 869–889 http://dx.doi.org/10.1007/s00033-011-0120-9 | Zbl 1258.35170
[14] He X.M., Zou Z.W., Existence and concentration of ground states for Schrödinger-Poisson equations with critical growth, J. Math. Phys., 2012, 53(2), #023702 | Zbl 1274.81078
[15] Ianni I., Solutions of the Schrödinger-Poisson problem concentrating on spheres. II. Existence, Math. Models Methods Appl. Sci., 2009, 19(6), 877–910 http://dx.doi.org/10.1142/S0218202509003656 | Zbl 1187.35236
[16] Ianni I., Vaira G., Solutions of the Schrödinger-Poisson problem concentrating on spheres. I. Necessary conditions, Math. Models Methods Appl. Sci., 2009, 19(5), 707–720 http://dx.doi.org/10.1142/S0218202509003589 | Zbl 1173.35687
[17] Jiang Y.S., Zhou H.S., Schrödinger-Poisson system with steep potential well, J. Differential Equations, 2011, 251(3), 582–608 http://dx.doi.org/10.1016/j.jde.2011.05.006 | Zbl 1233.35086
[18] Kikuchi H., On the existence of a solution for elliptic system related to the Maxwell-Schrödinger equations, Nonlinear Anal., 2007, 67(5), 1445–1456 http://dx.doi.org/10.1016/j.na.2006.07.029 | Zbl 1119.35085
[19] Li G.B., Peng S., Wang C.H., Multi-bump solutions for the nonlinear Schrödinger-Poisson system, J. Math. Phys., 2011, 52(5), #053505 | Zbl 1317.35238
[20] Li G.B., Peng S., Yan S., Infinitely many positive solutions for the nonlinear Schrödinger-Poisson system, Commun. Contemp. Math., 2010, 12(6), 1069–1092 http://dx.doi.org/10.1142/S0219199710004068 | Zbl 1206.35082
[21] Lins Haendel F., Silva Elves A.B., Quasilinear asymptotically periodic elliptic equations with critical growth, Nonlinear Anal., 2009, 71(7–8), 2890–2905 http://dx.doi.org/10.1016/j.na.2009.01.171
[22] Mawhin J., Willem M., Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences, 74, Springer-Verlag, New York, 1989 | Zbl 0676.58017
[23] Ruiz D., The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 2006, 237(2), 655–674 http://dx.doi.org/10.1016/j.jfa.2006.04.005 | Zbl 1136.35037
[24] Silva Elves A.B., Vieira Gilberto F., Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var. Partial Differential Equations, 2010, 39(1–2), 1–33 http://dx.doi.org/10.1007/s00526-009-0299-1 | Zbl 1223.35290
[25] Sun J.T., Chen H.B., Nieto J., On ground state solutions for some non-autonomous Schrödinger-Poisson systems, J. Differential Equations, 2012, 252(5), 3365–3380 http://dx.doi.org/10.1016/j.jde.2011.12.007 | Zbl 1241.35057
[26] Sun J.T., Chen H.B., Yang L., Positive solutions of asymptotically linear Schrödinger-Poisson systems with a radial potential vanishing at infinity, Nonlinear Anal., 2011, 74(2), 413–423 http://dx.doi.org/10.1016/j.na.2010.08.052 | Zbl 1202.35083
[27] Szulkin A., Weth T., The Method of Nehari Manifold, Gao D.Y. and Motreanu D. (Eds.), Handbook of Nonconvex Analysis and Applications, International Press, Boston, 2010, 597–632 | Zbl 1218.58010
[28] Vaira G., Ground states for Schrödinger-Poisson type systems, Ricerche mat., 2011, 60(2), 263–297 http://dx.doi.org/10.1007/s11587-011-0109-x | Zbl 1261.35057
[29] Wang J., Tian L.X., Xu J.X., Zhang F.B., Existence and concentration of positive ground state solutions for Schrödinger-Poisson systems, Adv. Nonlinear Stud., 2013, 13(3), 553–582 | Zbl 1295.35219
[30] Wang Z.P., Zhou H.S., Positive solution for a nonlinear stationary Schrödinger-Poisson system in ℝ3, Discrete Contin. Dyn. Syst., 2007, 18(4), 809–816 http://dx.doi.org/10.3934/dcds.2007.18.809 | Zbl 1133.35427
[31] Willem M., Minimax Theorems, Progr. Nonlinear Differential Equations Appl., 24, Birkhäuser, Basel, 1996 | Zbl 0856.49001
[32] Yang M.H., Han Z.Q., Existence and multiplicity results for the nonlinear Schrödinger-Poisson systems, Nonlinear Anal. Real World Appl., 2012, 13(3), 1093–1101 http://dx.doi.org/10.1016/j.nonrwa.2011.07.008 | Zbl 1241.35192
[33] Zhang H., Xu J.X., Zhang F.B., Positive ground states for asymptotically periodic Schrödinger-Poisson systems, Math. Meth. Appl. Sci., 2013, 36(4), 427–439 http://dx.doi.org/10.1002/mma.2604 | Zbl 1271.35022
[34] Zhao L.G., Zhao F.K., Positive solutions for Schrödinger-Poisson equations with a critical exponent, Nonlinear. Anal., 2009, 70(6), 2150–2164 http://dx.doi.org/10.1016/j.na.2008.02.116 | Zbl 1156.35374