The space of the torsion (0,3)-tensors of the linear connections on almost contact manifolds with B-metric is decomposed in 15 orthogonal and invariant subspaces with respect to the action of the structure group. Three known connections, preserving the structure, are characterized regarding this classification.
@article{bwmeta1.element.doi-10_2478_s11533-014-0422-1, author = {Mancho Manev and Miroslava Ivanova}, title = {A classification of the torsion tensors on almost contact manifolds with B-metric}, journal = {Open Mathematics}, volume = {12}, year = {2014}, pages = {1416-1432}, zbl = {1310.53069}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0422-1} }
Mancho Manev; Miroslava Ivanova. A classification of the torsion tensors on almost contact manifolds with B-metric. Open Mathematics, Tome 12 (2014) pp. 1416-1432. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0422-1/
[1] Alexiev V., Ganchev G., On the classification of almost contact metric manifolds, In: Mathematics and Education in Mathematics, Proceedings of 15th Spring Conference of UBM, (6–9 Apr. 1986, Sunny Beach, Bulgaria), Professor Marin Drinov Academic Publishing House, 1986, 155–161, (arXiv:1110.4297) | Zbl 0817.53017
[2] Bismut J.-M., A local index theorem for non-Kähler manifolds, Math. Ann., 1989, 284, 681–699 http://dx.doi.org/10.1007/BF01443359 | Zbl 0666.58042
[3] Biquard O., Métriques d’Einstein asymptotiquement symétriques, Astérisque, 2000, 265; English translation: Asymptotically Symmetric Einstein Metrics, SMF/AMS Texts and Monographs, American Mathematical Society, 2006, 13
[4] Chern S.S., Complex manifolds without potential theory, 2nd ed., Springer-Verlag, 1979 http://dx.doi.org/10.1007/978-1-4684-9344-3
[5] Friedrich T., Ivanov S., Parallel spinors and connections with skew-symmetric torsion in string theory, Asian J. Math., 2002, 6, 303–336 | Zbl 1127.53304
[6] Friedrich T., Ivanov S., Almost contact manifolds, connections with torsion, and parallel spinors, J. Reine Angew. Math., 2003, 559, 217–236 | Zbl 1035.53058
[7] Ganchev G., Borisov A., Note on the almost complex manifolds with Norden metric, C. R. Acad. Bulgare Sci., 1986, 39, 31–34 | Zbl 0608.53031
[8] Ganchev G., Gribachev K., Mihova V., B-connections and their conformal invariants on conformally Kaehler manifolds with B-metric, Publ. Inst. Math. (Beograd) (N.S.), 1987, 42(56), 107–121 | Zbl 0638.53021
[9] Ganchev G., Ivanov S., Characteristic curvatures on complex Riemannian manifolds, Riv. Mat. Univ. Parma (5), 1992, 1, 155–162 | Zbl 0795.53065
[10] Ganchev G., Mihova V., Canonical connection and the canonical conformal group on an almost complex manifold with B-metric, Annuaire Univ. Sofia Fac. Math. Inform., 1987, 81, 195–206 | Zbl 0818.53043
[11] Ganchev G., Mihova V., Gribachev K., Almost contact manifolds with B-metric, Math. Balkanica (N.S.), 1993, 7, 261–276 | Zbl 0830.53031
[12] Gates S.J., Hull C.M., Roček M., Twisted multiplets and new supersymmetric non-linear σ-models, Nuclear Phys. B, 1984, 248, 157–186 http://dx.doi.org/10.1016/0550-3213(84)90592-3
[13] Gauduchon P., Hermitian connections and Dirac operators, Boll. Unione Mat. Ital. (7), 1997, 11-B(2), 257–288 | Zbl 0876.53015
[14] Gray A., Hervella L., The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. (4), 1980, 123, 35–58 http://dx.doi.org/10.1007/BF01796539 | Zbl 0444.53032
[15] Gribacheva D., Natural connections on Riemannian product manifolds, C. R. Acad. Bulgare Sci., 2011, 64, 799–806 | Zbl 1289.53077
[16] Gribacheva D., Natural connections on conformal Riemannian P-manifolds, C. R. Acad. Bulgare Sci., 2012, 65, 581–590 | Zbl 1265.53040
[17] Gribacheva D., Mekerov D., Canonical connection on a class of Riemannian almost product manifolds, J. Geom., 2011, 102, 53–71 http://dx.doi.org/10.1007/s00022-011-0098-7 | Zbl 1243.53011
[18] Ivanov P., Ivanov S., SU(3)-instantons and G 2; Spin(7)-heterotic string solitons, Comm. Math. Phys., 2005, 259, 79–102 http://dx.doi.org/10.1007/s00220-005-1396-4 | Zbl 1082.53027
[19] Ivanov S., Papadopoulos G., Vanishing theorems and string backgrounds, Classical Quantum Gravity, 2001, 18, 1089–1110 http://dx.doi.org/10.1088/0264-9381/18/6/309 | Zbl 0990.53078
[20] Lichnerowicz A., Un théorème sur les espaces homogènes complexes, Arch. Math., 1954, 5, 207–215 http://dx.doi.org/10.1007/BF01899340 | Zbl 0057.38202
[21] Lichnerowicz A., Généralisation de la géométrie kählérienne globale, Colloque de geometrie differentielle, Louvain, 1955, 16, 99–122
[22] Manev M., Properties of curvature tensors on almost contact manifolds with B-metric, Proceedings of the Jubilee Scientific Session of the Vasil Levski National Military Higher School, Veliko Tarnovo, 1993, 27, 221–227
[23] Manev M., Contactly conformal transformations of general type of almost contact manifolds with B-metric. Applications, Math. Balkanica (N.S.), 1997, 11, 347–357 | Zbl 1032.53021
[24] Manev M., Natural connection with totally skew-symmetric torsion on almost contact manifolds with B-metric, Int. J. Geom. Methods Mod. Phys., 2012, 9, 1250044 (20 pages) http://dx.doi.org/10.1142/S0219887812500442 | Zbl 1261.53025
[25] Manev M., Gribachev K., Conformally invariant tensors on almost contact manifolds with B-metric, Serdica Math. J., 1994, 20, 133–147 | Zbl 0833.53034
[26] Manev M., Ivanova M., A natural connection on some classes of almost contact manifolds with B-metric, C. R. Acad. Bulgare Sci., 2012, 65, 429–436 | Zbl 1265.53033
[27] Manev M., Ivanova M., Canonical-type connection on almost contact manifolds with B-metric, Ann. Global Anal. Geom., 2013, 43, 397–408 http://dx.doi.org/10.1007/s10455-012-9351-z | Zbl 1267.53031
[28] Manev M., Staikova M., On almost paracontact Riemannian manifolds of type (n, n), J. Geom., 2001, 72, 108–114 http://dx.doi.org/10.1007/s00022-001-8572-2 | Zbl 1009.53024
[29] Mekerov D., A connection with skew-symmetric torsion and Kähler curvature tensor on quasi-Kähler manifolds with Norden metric, C. R. Acad. Bulgare Sci., 2008, 61, 1249–1256 | Zbl 1199.53084
[30] Mekerov D., Canonical connection on quasi-Kähler manifolds with Norden metric, J. Tech. Univ. Plovdiv Fundam. Sci. Appl. Ser. A Pure Appl. Math., 2009, 14, 73–86
[31] Nakova G., Zamkovoy S., Eleven classes of almost paracontact manifolds with semi-Riemannian metric of (n+1; n), In: Adachi T., Hashimoto H., Hristov M. (Eds.), Recent Progress in Differential Geometry and its Related Fields. Proceedings of the 2nd International Colloquium on Differential Geometry and Its Related Fields (6–10 Sept. 2010, Veliko Tarnovo, Bulgaria), World Scientific, Singapore, 2011, 119–136 | Zbl 1264.53038
[32] Naveira A.M., A classification of Riemannian almost-product manifolds, Rend. Mat. Appl. (7), 1983, 3, 577–592 | Zbl 0538.53045
[33] Staikova M., Gribachev K., Canonical connections and their conformal invariants on Riemannian P-manifolds, Serdica Math. J., 1992, 18, 150–161 | Zbl 0810.53026
[34] Strominger A., Superstrings with torsion, Nuclear Phys. B, 1986, 274, 253–284 http://dx.doi.org/10.1016/0550-3213(86)90286-5
[35] Tanaka N., On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections, Jpn. J. Math., 1976, 20, 131–190 | Zbl 0346.32010
[36] Tanno S., Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc., 1989, 314, 349–379 http://dx.doi.org/10.1090/S0002-9947-1989-1000553-9 | Zbl 0677.53043
[37] Webster S.M., Pseudo-Hermitian structures on a real hypersurface, J. Differential Geom., 1978, 13, 25–41 | Zbl 0379.53016
[38] Yano K., Differential geometry on complex and almost complex spaces, Pergamon Press, Oxford, 1965 | Zbl 0127.12405
[39] Yano K., Kon M., Structures on manifolds, World Scientific, 1984