The study of parity-alternating permutations of {1, 2, … n} is extended to permutations containing a prescribed number of parity successions - adjacent pairs of elements of the same parity. Several enumeration formulae are computed for permutations containing a given number of parity successions, in conjunction with further parity and length restrictions. The objects are classified using direct construction and elementary combinatorial techniques. Analogous results are derived for circular permutations.
@article{bwmeta1.element.doi-10_2478_s11533-014-0421-2, author = {Augustine Munagi}, title = {Parity-alternating permutations and successions}, journal = {Open Mathematics}, volume = {12}, year = {2014}, pages = {1390-1402}, zbl = {1292.05014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0421-2} }
Augustine Munagi. Parity-alternating permutations and successions. Open Mathematics, Tome 12 (2014) pp. 1390-1402. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0421-2/
[1] Andrews G.E., The Theory of Partitions, Encyclopedia of Mathematics and its Applications, 2, Addison-Wesley, Reading, 1976 | Zbl 0371.10001
[2] Knopfmacher A., Munagi A., Wagner S., Successions in words and compositions, Ann. Comb., 2012, 16(2), 277–287 http://dx.doi.org/10.1007/s00026-012-0131-z | Zbl 1256.05006
[3] Moser W.O.J., Abramson M., Generalizations of Terquem’s problem, J. Combinatorial Theory, 1969, 7(2), 171–180 http://dx.doi.org/10.1016/S0021-9800(69)80052-9 | Zbl 0181.02103
[4] Munagi A.O., Alternating subsets and permutations, Rocky Mountain J. Math., 2010, 40(6), 1965–1977 http://dx.doi.org/10.1216/RMJ-2010-40-6-1965 | Zbl 1206.05006
[5] Munagi A.O., Alternating subsets and successions, Ars Combin., 2013, 110, 77–86 | Zbl 1301.05024
[6] Riordan J., Permutations without 3-sequences, Bull. Amer. Math. Soc., 1945, 51, 745–748 http://dx.doi.org/10.1090/S0002-9904-1945-08439-0 | Zbl 0060.02902
[7] Tanimoto S., Parity alternating permutations and signed Eulerian numbers, Ann. Comb., 2010, 14(3), 355–366 http://dx.doi.org/10.1007/s00026-010-0064-3 | Zbl 1233.05217
[8] Tanny S.M., Permutations and successions, J. Combinatorial Theory Ser. A, 1976, 21(2), 196–202 http://dx.doi.org/10.1016/0097-3165(76)90063-7 | Zbl 0339.05004