On the existence of ɛ-fixed points
Tiziana Cardinali
Open Mathematics, Tome 12 (2014), p. 1320-1329 / Harvested from The Polish Digital Mathematics Library

In this paper we prove some approximate fixed point theorems which extend, in a broad sense, analogous results obtained by Brânzei, Morgan, Scalzo and Tijs in 2003. By assuming also the weak demiclosedness property we state two fixed point theorems. Moreover, we study the existence of ɛ-Nash equilibria.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:269167
@article{bwmeta1.element.doi-10_2478_s11533-014-0418-x,
     author = {Tiziana Cardinali},
     title = {On the existence of e-fixed points},
     journal = {Open Mathematics},
     volume = {12},
     year = {2014},
     pages = {1320-1329},
     zbl = {06308915},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0418-x}
}
Tiziana Cardinali. On the existence of ɛ-fixed points. Open Mathematics, Tome 12 (2014) pp. 1320-1329. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0418-x/

[1] Brânzei R., Morgan J., Scalzo V., Tijs S., Approximate fixed point theorems in Banach spaces with applications in game theory, J. Math. Anal. Appl., 2003, 285(2), 619–628 http://dx.doi.org/10.1016/S0022-247X(03)00450-5 | Zbl 1037.47038

[2] Chien S., Sinclair A., Convergence to approximate Nash equilibria in congestion games, In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, January 7–9, 2007, Society for Industrial and Applied Mathematics, Philadelphia, 2007, 169–178 | Zbl 1303.91018

[3] Debreu G., A social equilibrium existence theorem, Proc. Nat. Acad. Sci. U.S.A., 1952, 38, 886–893 http://dx.doi.org/10.1073/pnas.38.10.886 | Zbl 0047.38804

[4] Denkowski Z., Migórski S., Papageorgiou N.S., An Introduction to Nonlinear Analysis: Theory, Kluwer, Boston, 2003

[5] García-Falset J., Llorens-Fuster E., Suzuki T., Fixed point theory for a class of generalized nonexpansive mappings, J. Math. Anal. Appl., 2011, 375(1), 185–195 http://dx.doi.org/10.1016/j.jmaa.2010.08.069 | Zbl 1214.47047

[6] Glebov N.I., On a generalization of the Kakutani fixed point theorem, Soviet Math. Dokl., 1969, 10(2), 446–448 | Zbl 0187.07503

[7] Glicksberg I.L., A further generalization of the Kakutani fixed theorem, with application to Nash equilibrium points, Proc. Amer. Math. Soc., 1952, 3(1), 170–174 | Zbl 0046.12103

[8] Morgan J., Raucci R., Lower semicontinuity for approximate social Nash equilibria, Internat. J. Game Theory, 2002, 31(4), 499–509 http://dx.doi.org/10.1007/s001820300134 | Zbl 1072.91001

[9] Nash J.F. Jr., Equilibrium points in n-person games, Proc. Nat. Acad. Sci. U.S.A., 1950, 36, 48–49 http://dx.doi.org/10.1073/pnas.36.1.48 | Zbl 0036.01104

[10] Puu T., On the stability of Cournot equilibrium when the number of competitors increases, J. Econom. Behavior Organization, 2008, 66(3–4), 445–456 http://dx.doi.org/10.1016/j.jebo.2006.06.010