Binary codes and partial permutation decoding sets from the odd graphs
Washiela Fish ; Roland Fray ; Eric Mwambene
Open Mathematics, Tome 12 (2014), p. 1362-1371 / Harvested from The Polish Digital Mathematics Library

For k ≥ 1, the odd graph denoted by O(k), is the graph with the vertex-set Ωk, the set of all k-subsets of Ω = 1, 2, …, 2k +1, and any two of its vertices u and v constitute an edge [u, v] if and only if u ∩ v = /0. In this paper the binary code generated by the adjacency matrix of O(k) is studied. The automorphism group of the code is determined, and by identifying a suitable information set, a 2-PD-set of the order of k 4 is determined. Lastly, the relationship between the dual code from O(k) and the code from its graph-theoretical complement O(k)¯, is investigated.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:269206
@article{bwmeta1.element.doi-10_2478_s11533-014-0417-y,
     author = {Washiela Fish and Roland Fray and Eric Mwambene},
     title = {Binary codes and partial permutation decoding sets from the odd graphs},
     journal = {Open Mathematics},
     volume = {12},
     year = {2014},
     pages = {1362-1371},
     zbl = {06308919},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0417-y}
}
Washiela Fish; Roland Fray; Eric Mwambene. Binary codes and partial permutation decoding sets from the odd graphs. Open Mathematics, Tome 12 (2014) pp. 1362-1371. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0417-y/

[1] Bailey R.F., Distance-Transitive Graphs, MMath thesis, University of Leeds, 2002

[2] Balaban A.T., Chemical graphs, part XII: Combinatorial patterns, Rev. Roumaine Math. Pures Appl., 1972, 17, 3–16 | Zbl 0241.05118

[3] Ball R.W., Maximal subgroups of symmetric groups, Trans. Amer. Math. Soc., 1966, 121(2), 393–407 http://dx.doi.org/10.1090/S0002-9947-1966-0202813-2 | Zbl 0136.27805

[4] Biggs N., An edge-colouring problem, Amer. Math. Monthly, 1972, 79(9), 1018–1020 http://dx.doi.org/10.2307/2318076

[5] Cameron P.J., Automorphism groups of graphs, In: Selected Topics in Graph Theory, 2, Academic Press, London, 1983, 89–127

[6] Chen B.L., Lih K.-W., Hamiltonian uniform subset graphs, J. Combin. Theory Ser. B, 1987, 42(3), 257–263 http://dx.doi.org/10.1016/0095-8956(87)90044-X

[7] Huffman W.C., Codes and groups, In: Handbook of Coding Theory, II, 2, North-Holland, Amsterdam, 1998, 1345–1440 | Zbl 0926.94039

[8] Kroll H.-J., Vincenti R., PD-sets for the codes related to some classical varieties, Discrete Math., 2005, 301(1), 89–105 http://dx.doi.org/10.1016/j.disc.2004.11.020 | Zbl 1087.94024

[9] MacWilliams J., Permutation decoding of systematic codes, Bell System Tech. J., 1964, 43, 485–505 http://dx.doi.org/10.1002/j.1538-7305.1964.tb04075.x | Zbl 0116.35304

[10] MacWilliams F.J., Sloane N.J.A., The Theory of Error-Correcting Codes, North-Holland Math. Library, 16, North-Holland, Amsterdam, 1977

[11] Meredith G.H.J., Lloyd E.K., The footballers of Croam, J. Combinatorial Theory Ser. B, 1973, 15, 161–166 http://dx.doi.org/10.1016/0095-8956(73)90016-6 | Zbl 0248.05129