The L q spectra and Rényi dimension of generalized inhomogeneous self-similar measures
Przemysław Liszka
Open Mathematics, Tome 12 (2014), p. 1305-1319 / Harvested from The Polish Digital Mathematics Library

Very recently bounds for the L q spectra of inhomogeneous self-similar measures satisfying the Inhomogeneous Open Set Condition (IOSC), being the appropriate version of the standard Open Set Condition (OSC), were obtained. However, if the IOSC is not satisfied, then almost nothing is known for such measures. In the paper we study the L q spectra and Rényi dimension of generalized inhomogeneous self-similar measures, for which we allow an infinite number of contracting similarities and probabilities depending on positions. As an application of the results, we provide a systematic approach to obtaining non-trivial bounds for the L q spectra and Rényi dimension of inhomogeneous self-similar measures not satisfying the IOSC and of homogeneous ones not satisfying the OSC. We also provide some non-trivial bounds without any separation conditions.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:269471
@article{bwmeta1.element.doi-10_2478_s11533-014-0414-1,
     author = {Przemys\l aw Liszka},
     title = {The L q spectra and R\'enyi dimension of generalized inhomogeneous self-similar measures},
     journal = {Open Mathematics},
     volume = {12},
     year = {2014},
     pages = {1305-1319},
     zbl = {1293.28003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0414-1}
}
Przemysław Liszka. The L q spectra and Rényi dimension of generalized inhomogeneous self-similar measures. Open Mathematics, Tome 12 (2014) pp. 1305-1319. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0414-1/

[1] Arbeiter M., Patzschke N., Random self-similar multifractals, Math. Nachr., 1996, 181, 5–42 http://dx.doi.org/10.1002/mana.3211810102 | Zbl 0873.28003

[2] Badii R., Politi A., Complexity, Cambridge Nonlinear Sci. Ser., 6, Cambridge University Press, Cambridge, 1997 http://dx.doi.org/10.1017/CBO9780511524691 | Zbl 1042.82500

[3] Bárány B., On the Hausdorff dimension of a family of self-similar sets with complicated overlaps, Fund. Math., 2009, 206, 49–59 http://dx.doi.org/10.4064/fm206-0-4 | Zbl 1194.28006

[4] Barnsley M.F., Fractals Everywhere, 2nd ed., Academic Press, Boston, 1993

[5] Barnsley M.F., Superfractals, Cambridge University Press, Cambridge, 2006 http://dx.doi.org/10.1017/CBO9781107590168

[6] Barnsley M.F., Demko S., Iterated function systems and the global construction of fractals, Proc. Roy. Soc. London Ser. A, 1985, 399(1817), 243–275 http://dx.doi.org/10.1098/rspa.1985.0057 | Zbl 0588.28002

[7] Beck C., Schlögl F., Thermodynamics of Chaotic Systems, Cambridge Nonlinear Sci. Ser., 4, Cambridge University Press, Cambridge, 1993 http://dx.doi.org/10.1017/CBO9780511524585

[8] Falconer K.J., Fractal Geometry, John Wiley & Sons, Chichester, 1990

[9] Falconer K., Techniques in Fractal Geometry, John Wiley & Sons, Chichester, 1997 | Zbl 0869.28003

[10] Feng D.-J., Gibbs properties of self-conformal measures and the multifractal formalism, Ergodic Theory Dynam. Systems, 2007, 27(3), 787–812 http://dx.doi.org/10.1017/S0143385706000952 | Zbl 1126.28003

[11] Feng D.-J., Olivier E., Multifractal analysis of weak Gibbs measures and phase transition - application to some Bernoulli convolutions, Ergodic Theory Dynam. Systems, 2003, 23(6), 1751–1784 http://dx.doi.org/10.1017/S0143385703000051 | Zbl 1128.37303

[12] Glickenstein D., Strichartz R.S., Nonlinear self-similar measures and their Fourier transforms, Indiana Univ. Math. J., 1996, 45(1), 205–220 http://dx.doi.org/10.1512/iumj.1996.45.1156 | Zbl 0860.28007

[13] Hutchinson J.E., Fractals and self-similarity, Indiana Univ. Math. J., 1981, 30(5), 713–747 http://dx.doi.org/10.1512/iumj.1981.30.30055 | Zbl 0598.28011

[14] Lasota A., Myjak J., On a dimension of measures, Bull. Polish Acad. Sci. Math., 2002, 50(2), 221–235 | Zbl 1020.28004

[15] Lau K.-S., Self-similarity, L p-spectrum and multifractal formalism, In: Fractal Geometry and Stochastics, Progr. Probab., 37, Birkhäuser, Basel, 1995, 55–90 http://dx.doi.org/10.1007/978-3-0348-7755-8_4

[16] Lau K.-S., Ngai S.-M., Multifractal measures and a weak separation condition, Adv. Math., 1991, 141(1), 45–96 http://dx.doi.org/10.1006/aima.1998.1773 | Zbl 0929.28007

[17] Lau K.-S., Ngai S.-M., L q-spectrum of Bernoulli convolutions associated with P. V. numbers, Osaka J. Math., 1999, 36(4), 993–1010 | Zbl 0956.28010

[18] Liszka P., On inhomogeneous self-similar measures and their L q spectra, Ann. Polon. Math., 2013, 109(1), 75–92 http://dx.doi.org/10.4064/ap109-1-6 | Zbl 06176235

[19] Olsen L., Snigireva N., L q spectra and Rényi dimensions of in-homogeneous self-similar measures, Nonlinearity, 2007, 20(1), 151–175 http://dx.doi.org/10.1088/0951-7715/20/1/010 | Zbl 1124.28010

[20] Olsen L., Snigireva N., In-homogenous self-similar measures and their Fourier transforms, Math. Proc. Cambridge Philos. Soc., 2008, 144(2), 465–493 http://dx.doi.org/10.1017/S0305004107000771 | Zbl 1146.28005

[21] Olsen L., Snigireva N., Multifractal spectra of in-homogenous self-similar measures, Indiana Univ. Math. J., 2008, 57(4), 1789–1844 http://dx.doi.org/10.1512/iumj.2008.57.3622 | Zbl 1218.28005

[22] Peruggia M., Discrete Iterated Function Systems, AK Peters, Wellesley, MA, 1993 | Zbl 0788.60086

[23] Rényi A., Probability Theory, North-Holland Ser. Appl. Math. Mech., 10, North-Holland, Elsevier, Amsterdam-London, New York, 1970

[24] Testud B., Transitions de phase dans l’analyse multifractale de mesures auto-similaires, C. R. Math. Acad. Sci. Paris, 2005, 340(9), 653–658 http://dx.doi.org/10.1016/j.crma.2005.03.020 | Zbl 1077.28009

[25] Testud B., Phase transitions for the multifractal analysis of self-similar measures, Nonlinearity, 2006, 19(5), 1201–1217 http://dx.doi.org/10.1088/0951-7715/19/5/009 | Zbl 1093.28007