We prove that for n > 1 the space of proper maps P 0(n, k) and the space of local maps F 0(n, k) are not homotopy equivalent.
@article{bwmeta1.element.doi-10_2478_s11533-014-0410-5, author = {Piotr Bart\l omiejczyk and Piotr Nowak-Przygodzki}, title = {On the homotopy equivalence of the spaces of proper and local maps}, journal = {Open Mathematics}, volume = {12}, year = {2014}, pages = {1330-1336}, zbl = {1297.55010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0410-5} }
Piotr Bartłomiejczyk; Piotr Nowak-Przygodzki. On the homotopy equivalence of the spaces of proper and local maps. Open Mathematics, Tome 12 (2014) pp. 1330-1336. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0410-5/
[1] Abd-Allah A.M., Brown R., A compact-open topology on partial maps with open domain, J. London Math. Soc., 1980, 21(3), 480–486 http://dx.doi.org/10.1112/jlms/s2-21.3.480 | Zbl 0436.54012
[2] Bartłomiejczyk P., Geba K., Izydorek M., Otopy classes of equivariant maps, J. Fixed Point Theory Appl., 2010, 7(1), 145–160 http://dx.doi.org/10.1007/s11784-010-0013-0 | Zbl 1205.55008
[3] Bartłomiejczyk P., Nowak-Przygodzki P., Gradient otopies of gradient local maps, Fund. Math., 2011, 214(1), 89–100 http://dx.doi.org/10.4064/fm214-1-6 | Zbl 1229.55003
[4] Bartłomiejczyk P., Nowak-Przygodzki P., Proper gradient otopies, Topology Appl., 2012, 159(10–11), 2570–2579 http://dx.doi.org/10.1016/j.topol.2012.04.014 | Zbl 1247.55002
[5] Bartłomiejczyk P., Nowak-Przygodzki P., The exponential law for partial, local and proper maps and its application to otopy theory, Commun. Contemp. Math. (in press), DOI: 10.1142/S0219199714500059 | Zbl 1303.55003
[6] Becker J.C., Gottlieb D.H., Vector fields and transfers, Manuscripta Math., 1991, 72(2), 111–130 http://dx.doi.org/10.1007/BF02568269 | Zbl 0736.55012
[7] Becker J.C., Gottlieb D.H., Spaces of local vector fields, In: Higher Homotopy Structures in Topology and Mathematical Physics, Contemp. Math., 227, American Mathematical Society, Providence, 1999, 21–28 http://dx.doi.org/10.1090/conm/227/03250
[8] Cohen F.R., Fibration and product decompositions in nonstable homotopy theory, In: Handbook of Algebraic Topology, North-Holland, Amsterdam, 1995, 1175–1208 http://dx.doi.org/10.1016/B978-044481779-2/50025-0 | Zbl 0871.55008
[9] Dancer E.N., Geba K., Rybicki S.M., Classification of homotopy classes of equivariant gradient maps, Fund. Math., 2005, 185(1), 1–18 http://dx.doi.org/10.4064/fm185-1-1 | Zbl 1086.47031
[10] Serre J.-P., Homologie singulière des espaces fibrés, Applications, Ann. of Math., 1951, 54(3), 425–505 http://dx.doi.org/10.2307/1969485 | Zbl 0045.26003