We study the behaviour of ℵ-compactness, extent and Lindelöf number in lexicographic products of linearly ordered spaces. It is seen, in particular, that for the case that all spaces are bounded all these properties behave very well when taking lexicographic products. We also give characterizations of these notions for generalized ordered spaces.
@article{bwmeta1.element.doi-10_2478_s11533-014-0407-0, author = {David Buhagiar and Emmanuel Chetcuti and Hans Weber}, title = {$\kappa$-compactness, extent and the Lindel\"of number in LOTS}, journal = {Open Mathematics}, volume = {12}, year = {2014}, pages = {1249-1264}, zbl = {1294.54018}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0407-0} }
David Buhagiar; Emmanuel Chetcuti; Hans Weber. κ-compactness, extent and the Lindelöf number in LOTS. Open Mathematics, Tome 12 (2014) pp. 1249-1264. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0407-0/
[1] Birkhoff G., Lattice Theory, 3rd ed., Amer. Math. Soc. Colloq. Publ., 25, American Mathematical Society, Providence, 1995
[2] Buhagiar D., Miwa T., On superparacompact and Lindelöf GO-spaces, Houston J. Math., 1998, 24(3), 443–457 | Zbl 0977.54019
[3] Faber M.J., Metrizability in Generalized Ordered Spaces, Math. Centre Tracts, 53, Mathematisch Centrum, Amsterdam, 1974 | Zbl 0282.54017
[4] Lutzer D., On Generalized Ordered Spaces, Dissertationes Math. (Rozprawy Mat.), 89, Polish Academy of Sciences, Warsaw, 1971
[5] Miwa T., Kemoto N., Linearly ordered extensions of GO-spaces, Topology Appl., 1993, 54(1–3), 133–140 http://dx.doi.org/10.1016/0166-8641(93)90057-K | Zbl 0808.54022
[6] Nagata J., Modern General Topology, 2nd ed., North-Holland Math. Library, 33, North-Holland, Amsterdam, 1985 | Zbl 0598.54001
[7] Stephenson R.M. Jr., Initially κ-compact and related spaces, In: Handbook of Set-Theoretic Topology, North-Holland, 1984, 603–632