The algebra of mode homomorphisms
Kira Adaricheva ; Anna Romanowska ; Jonathan Smith
Open Mathematics, Tome 12 (2014), p. 1265-1277 / Harvested from The Polish Digital Mathematics Library

Modes are idempotent and entropic algebras. While the mode structure of sets of submodes has received considerable attention in the past, this paper is devoted to the study of mode structure on sets of mode homomorphisms. Connections between the two constructions are established. A detailed analysis is given for the algebra of homomorphisms from submodes of one mode to submodes of another. In particular, it is shown that such algebras can be decomposed as Płonka sums of more elementary homomorphism algebras. Some critical examples are examined.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:269651
@article{bwmeta1.element.doi-10_2478_s11533-014-0405-2,
     author = {Kira Adaricheva and Anna Romanowska and Jonathan Smith},
     title = {The algebra of mode homomorphisms},
     journal = {Open Mathematics},
     volume = {12},
     year = {2014},
     pages = {1265-1277},
     zbl = {1312.08001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0405-2}
}
Kira Adaricheva; Anna Romanowska; Jonathan Smith. The algebra of mode homomorphisms. Open Mathematics, Tome 12 (2014) pp. 1265-1277. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-014-0405-2/

[1] Bošnjak I., Madarász R., Retraction closure property, Algebra Universalis, 2013, 69(3), 279–285 http://dx.doi.org/10.1007/s00012-013-0229-0 | Zbl 1283.08004

[2] Csákány B., Varieties of affine modules, Acta Sci. Math. (Szeged), 1975, 37, 3–10 | Zbl 0279.08002

[3] Hion Ja.V., Ω-ringoids, Ω-rings and their representations, Trudy Moskov. Mat. Obšč., 1965, 14, 3–47 (in Russian)

[4] Mašulović D., Turning retractions of an algebra into an algebra, Novi Sad J. Math., 2004, 34(1), 89–98 | Zbl 1107.08003

[5] Neumann W.D., On the quasivariety of convex subsets of affine spaces, Arch. Math. (Basel), 1970, 21, 11–16 http://dx.doi.org/10.1007/BF01220869 | Zbl 0194.01502

[6] Pilitowska A., Zamojska-Dzienio A., Varieties generated by modes of submodes, Algebra Universalis, 2012, 68(3–4), 221–236 http://dx.doi.org/10.1007/s00012-012-0201-4 | Zbl 1270.08004

[7] Pöschel R., Reichel M., Projection algebras and rectangular algebras, In: General Algebra and Applications, Potsdam, January 31–February 2, 1992, Res. Exp. Math., 20, Heldermann, Berlin, 1993, 180–194 | Zbl 0788.08007

[8] Romanowska A.B., Smith J.D.H., Modal Theory, Res. Exp. Math., 9, Heldermann, Berlin, 1985

[9] Romanowska A.B., Smith J.D.H., Modes, World Scientific, Singapore, 2002 http://dx.doi.org/10.1142/4953

[10] Smith J.D.H., Romanowska A.B., Post-Modern Algebra, Pure Appl. Math. (N.Y.), John Wiley & Sons, New York, 1999 http://dx.doi.org/10.1002/9781118032589 | Zbl 0946.00001

[11] Sokratova O., Kaljulaid U., Ω-rings and their flat representations, In: Contributions to General Algebra, 12, Vienna, June 3–6, 1999, Heyn, Klagenfurt, 2000, 377–390 | Zbl 0971.16024