Dirac and Plateau billiards in domains with corners
Misha Gromov
Open Mathematics, Tome 12 (2014), p. 1109-1156 / Harvested from The Polish Digital Mathematics Library

Groping our way toward a theory of singular spaces with positive scalar curvatures we look at the Dirac operator and a generalized Plateau problem in Riemannian manifolds with corners. Using these, we prove that the set of C 2-smooth Riemannian metrics g on a smooth manifold X, such that scalg(x) ≥ κ(x), is closed under C 0-limits of Riemannian metrics for all continuous functions κ on X. Apart from that our progress is limited but we formulate many conjectures. All along, we emphasize geometry, rather than topology of manifolds with their scalar curvatures bounded from below.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:269152
@article{bwmeta1.element.doi-10_2478_s11533-013-0399-1,
     author = {Misha Gromov},
     title = {Dirac and Plateau billiards in domains with corners},
     journal = {Open Mathematics},
     volume = {12},
     year = {2014},
     pages = {1109-1156},
     zbl = {1315.53027},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0399-1}
}
Misha Gromov. Dirac and Plateau billiards in domains with corners. Open Mathematics, Tome 12 (2014) pp. 1109-1156. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0399-1/

[1] Allard W.K., On the first variation of a varifold, Ann. Math., 1972, 95(3), 417–491 http://dx.doi.org/10.2307/1970868 | Zbl 0252.49028

[2] de Almeida S., Minimal hypersurfaces of a positive scalar curvature manifold, Math. Z., 1985, 190(1), 73–82 http://dx.doi.org/10.1007/BF01159165 | Zbl 0549.53059

[3] Almgren F.J. Jr., Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure, Ann. Math., 1968, 87(2), 321–391 http://dx.doi.org/10.2307/1970587 | Zbl 0162.24703

[4] Almgren F., Optimal isoperimetric inequalities, Indiana Univ. Math. J., 1986, 35(3), 451–547 http://dx.doi.org/10.1512/iumj.1986.35.35028 | Zbl 0585.49030

[5] Bernig A., Scalar curvature of definable CAT-spaces, Adv. Geom., 2013, 3(1), 23–43 | Zbl 1028.53031

[6] Brakke K.A., Minimal surfaces, corners, and wires, J. Geom. Anal., 1992, 2(1), 11–36 http://dx.doi.org/10.1007/BF02921333 | Zbl 0725.53013

[7] Brendle S., Marques F.C., Neves A., Deformations of the hemisphere that increase scalar curvature, preprint avaliable at http://arxiv-web3.library.cornell.edu/abs/1004.3088v3 | Zbl 1227.53048

[8] Burago Yu.D., Toponogov V.A., On three-dimensional Riemannian spaces with curvature bounded above, Math. Notes, 1973, 13(6), 526–530 http://dx.doi.org/10.1007/BF01163962 | Zbl 0277.53025

[9] Cheeger J., Colding T.H., On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom., 1997, 46(3), 406–480 | Zbl 0902.53034

[10] Davaux H., An optimal inequality between scalar curvature and spectrum of the Laplacian, Math. Ann., 2003, 327(2), 271–292 http://dx.doi.org/10.1007/s00208-003-0451-8 | Zbl 1038.58035

[11] Eichmair M., Miao P., Wang X., Extension of a theorem of Shi and Tam, preprint available at http://arxiv.org/abs/0911.0377 | Zbl 1238.53025

[12] Goette S., Semmelmann U., Spinc structures and scalar curvature estimates, Ann. Global Anal. Geom., 2001, 20(4), 301–324 http://dx.doi.org/10.1023/A:1013035721335 | Zbl 1002.53023

[13] Goette S., Semmelmann U., Scalar curvature estimates for compact symmetric spaces, Differential Geom. Appl., 2002, 16(1), 65–78 http://dx.doi.org/10.1016/S0926-2245(01)00068-7 | Zbl 1043.53030

[14] Grant J.D.E., Tassotti N., A positive mass theorem for low-regularity metrics, preprint available at http://arxiv.org/abs/1205.1302

[15] Gromov M., Filling Riemannian manifolds, J. Differential Geom., 1983, 18(1), 1–147 | Zbl 0515.53037

[16] Gromov M., Sign and geometric meaning of curvature, Rend. Sem. Mat. Fis. Milano, 1991, 61, 9–123 http://dx.doi.org/10.1007/BF02925201 | Zbl 0820.53035

[17] Gromov M., Foliated Plateau problem, Part I: minimal varieties, Geom. Funct. Anal., 1991, 1(1), 14–79 http://dx.doi.org/10.1007/BF01895417 | Zbl 0768.53011

[18] Gromov M., Metric invariants of Kähler manifolds, In: Differential Geometry and Topology, World Scientific, River Edge, 1993, 90–116 | Zbl 0888.53047

[19] Gromov M., Positive curvature, macroscopic dimension, spectral gaps and higher signatures, In: Functional Analysis on the Eve of the 21st Century, II, Progr. Math., 132, Birkhäuser, Boston, 1996, 1–213

[20] Gromov M., Singularities, expanders and topology of maps. Part 2: from combinatorics to topology via algebraic isoperimetry, Geom. Func. Anal., 2010, 20(2), 416–526 http://dx.doi.org/10.1007/s00039-010-0073-8 | Zbl 1251.05039

[21] Gromov M., Hilbert volume in metric spaces. Part 1, Cent. Eur. J. Math., 2012, 10(2), 371–400 http://dx.doi.org/10.2478/s11533-011-0143-7

[22] Gromov M., Plateau-Stein manifolds, Cent. Eur. J. Math., 2014, 12(7), 923–951 http://dx.doi.org/10.2478/s11533-013-0387-5 | Zbl 1293.31006

[23] Gromov M., Lawson H.B. Jr., Spin and scalar curvature in the presence of a fundamental group. I, Ann. Math., 1980, 111(3), 209–230 http://dx.doi.org/10.2307/1971198 | Zbl 0445.53025

[24] Gromov M., Lawson H.B. Jr., The classification of simply connected manifolds of positive scalar curvature, Ann. Math., 1980, 111(3), 423–434 http://dx.doi.org/10.2307/1971103 | Zbl 0463.53025

[25] Gromov M., Lawson H.B. Jr., Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Inst. Hautes Études Sci. Publ. Math., 1983, 58, 83–196 http://dx.doi.org/10.1007/BF02953774 | Zbl 0538.53047

[26] Grüter M., Optimal regularity for codimension one minimal surfaces with a free boundary, Manuscripta Math., 1987, 58(3), 295–343 http://dx.doi.org/10.1007/BF01165891 | Zbl 0609.35012

[27] Grüter M., Jost J., Allard type regularity results for varifolds with free boundaries, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1986, 13(1), 129–169 | Zbl 0615.49018

[28] Kazdan J.L., Warner F.W., Prescribing curvatures, In: Differential Geometry, 2, Proc. Symp. in Pure Math., 27, American Mathematical Society, Providence, 1975, 309–319 | Zbl 0313.53017

[29] Kinderlehrer D., Nirenberg L., Regularity in free boundary problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1977, 4(2), 373–391 | Zbl 0352.35023

[30] La Nave G., Macroscopic dimension and fundamental group of manifolds with positive isotropic curvature, preprint available at http://arxiv.org/abs/1303.5096

[31] Lee D.A., A positive mass theorem for Lipschitz metrics with small singular sets, preprint available at http://arxiv.org/abs/1110.6485

[32] Listing M., Scalar curvature on compact symmetric spaces, preprint available at http://arxiv.org/abs/1007.1832

[33] Listing M., Scalar curvature and vector bundles, preprint available at http://arxiv.org/abs/1202.4325

[34] Llarull M., Scalar curvature estimates for (n + 4k)-dimensional manifolds, Differential Geom. Appl., 1996, 6(4), 321–326 http://dx.doi.org/10.1016/S0926-2245(96)00025-3

[35] Lohkamp J., Positive scalar curvature in dim C 8, C. R. Math. Acad. Sci. Paris, 2006, 343(9), 585–588 http://dx.doi.org/10.1016/j.crma.2006.09.013 | Zbl 1118.53041

[36] Lusztig G., Cohomology of classifying spaces and hermitian representations, Represent. Theory, 1997, 1, 31–36 http://dx.doi.org/10.1090/S1088-4165-97-00004-6 | Zbl 0897.55013

[37] McFeron D., Székelyhidi G., On the positive mass theorem for manifolds with corners, preprint available at http://arxiv.org/abs/1104.2258 | Zbl 1253.53032

[38] Miao P., Positive mass theorem on manifolds admitting corners along a hypersurface, Adv. Theor. Math. Phys., 2002, 6(6), 1163–1182

[39] Micallef M., Moore J.D., Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes, Ann. Math., 1988, 127(1), 199–227 http://dx.doi.org/10.2307/1971420 | Zbl 0661.53027

[40] Min-Oo M., Scalar curvature rigidity of asymptotically hyperbolic spin manifolds, Math. Ann., 1989, 285(4), 527–539 http://dx.doi.org/10.1007/BF01452046 | Zbl 0686.53038

[41] Min-Oo M., Dirac Operator in Geometry and Physics, Global Riemannian Geometry: Curvature and Topology, Adv. Courses Math. CRM Barcelona, Birkhäuser, Basel, 2003, 55–87 http://dx.doi.org/10.1007/978-3-0348-8055-8_2

[42] Petrunin A.M., An upper bound for the curvature integral, St. Petersburg Math. J., 2009, 20(2), 255–265 http://dx.doi.org/10.1090/S1061-0022-09-01046-2

[43] Reifenberg E.R., Solution of the Plateau problem for m-dimensional surfaces of varying topological type, Acta Math., 1962, 104(1–2), 1–92 | Zbl 0099.08503

[44] Schoen R., Yau S.-T., Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature, Ann. Math., 1979, 110(1), 127–142 http://dx.doi.org/10.2307/1971247 | Zbl 0431.53051

[45] Schoen R., Yau S.T., On the structure of manifolds with positive scalar curvature, Manuscripta Math., 1979, 28(1–3), 159–183 http://dx.doi.org/10.1007/BF01647970 | Zbl 0423.53032

[46] Simon L., Regularity of capillary surfaces over domains with corners, Pacific J. Math., 1980, 88(2), 363–377 http://dx.doi.org/10.2140/pjm.1980.88.363 | Zbl 0467.35022

[47] Smale N., Generic regularity of homologically area minimizing hypersurfaces in eight-dimensional manifolds, Commun. Anal. Geom., 1993, 1(2), 217–228 | Zbl 0843.58027

[48] Sormani C., Wenger S., The intrinsic flat distance between Riemannian manifolds and integral current spaces, J. Differential Geom., 2011, 87(1), 117–199 | Zbl 1229.53053

[49] Wenger S., A short proof of Gromov’s filling inequality, Proc. Amer. Math. Soc., 2008, 136(8), 2937–2941 http://dx.doi.org/10.1090/S0002-9939-08-09203-4 | Zbl 1148.53031