In this paper we characterize the closures of arithmetic progressions in the topology T on the set of positive integers with the base consisting of arithmetic progressions {an + b} such that if the prime number p is a factor of a, then it is also a factor of b. The topology T is called the common division topology.
@article{bwmeta1.element.doi-10_2478_s11533-013-0394-6, author = {Paulina Szczuka}, title = {The closures of arithmetic progressions in the common division topology on the set of positive integers}, journal = {Open Mathematics}, volume = {12}, year = {2014}, pages = {1008-1014}, zbl = {1304.54007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0394-6} }
Paulina Szczuka. The closures of arithmetic progressions in the common division topology on the set of positive integers. Open Mathematics, Tome 12 (2014) pp. 1008-1014. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0394-6/
[1] Brown M., A countable connected Hausdorff space, In: Cohen L.M., The April Meeting in New York, Bull. Amer. Math. Soc., 1953, 59(4), 367
[2] Furstenberg H., On the Infinitude of primes, Amer. Math. Monthly, 1955, 62(5), 353 http://dx.doi.org/10.2307/2307043 | Zbl 1229.11009
[3] Golomb S.W., A connected topology for the integers, Amer. Math. Monthly, 1959, 66(8), 663–665 http://dx.doi.org/10.2307/2309340 | Zbl 0202.33001
[4] Kelley J.L., General Topology, Grad. Texts in Math., 27, Springer, New York-Berlin, 1975
[5] Kirch A.M., A countable, connected, locally connected Hausdorff space, Amer. Math. Monthly, 1969, 76(2), 169–171 http://dx.doi.org/10.2307/2317265 | Zbl 0174.25602
[6] LeVeque W.J., Topics in Number Theory, I-II, Dover, Mineola, 2002 | Zbl 1009.11001
[7] Rizza G.B., A topology for the set of nonnegatlve integers, Riv. Mat. Univ. Parma, 1993, 2, 179–185 | Zbl 0834.11006
[8] Szczuka P., The connectedness of arithmetic progressions in Furstenberg’s, Golomb’s, and Kirch’s topologies, Demonstratio Math., 2010, 43(4), 899–909 | Zbl 1303.11021
[9] Szczuka P., Connections between connected topological spaces on the set of positive integers, Cent. Eur. J. Math., 2013, 11(5), 876–881 http://dx.doi.org/10.2478/s11533-013-0210-3 | Zbl 1331.54021
[10] Szczuka P., Regular open arithmetic progressions in connected topological spaces on the set of positive integers, Glas. Mat. (in press) | Zbl 06374862