Symmetric Jacobians
Michiel Bondt
Open Mathematics, Tome 12 (2014), p. 787-800 / Harvested from The Polish Digital Mathematics Library

This article is about polynomial maps with a certain symmetry and/or antisymmetry in their Jacobians, and whether the Jacobian Conjecture is satisfied for such maps, or whether it is sufficient to prove the Jacobian Conjecture for such maps. For instance, we show that it suffices to prove the Jacobian conjecture for polynomial maps x + H over ℂ such that satisfies all symmetries of the square, where H is homogeneous of arbitrary degree d ≥ 3.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:269312
@article{bwmeta1.element.doi-10_2478_s11533-013-0393-7,
     author = {Michiel Bondt},
     title = {Symmetric Jacobians},
     journal = {Open Mathematics},
     volume = {12},
     year = {2014},
     pages = {787-800},
     zbl = {1307.14086},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0393-7}
}
Michiel Bondt. Symmetric Jacobians. Open Mathematics, Tome 12 (2014) pp. 787-800. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0393-7/

[1] de Bondt M., Quasi-translations and counterexamples to the homogeneous dependence problem, Proc. Amer. Math. Soc., 2006, 134(10), 2849–2856 http://dx.doi.org/10.1090/S0002-9939-06-08335-3 | Zbl 1107.14054

[2] de Bondt M.C., Homogeneous Keller Maps, PhD thesis, Radboud University Nijmegen, 2009, available at http://webdoc.ubn.ru.nl/mono/b/bondt_m_de/homokema.pdf

[3] de Bondt M., Constant polynomial Hessian determinants in dimension three, preprint available at http://arxiv.org/abs/1203.6605

[4] de Bondt M., van den Essen A., Singular Hessians, J. Algebra, 2004, 282(1), 195–204 http://dx.doi.org/10.1016/j.jalgebra.2004.08.026

[5] de Bondt M., van den Essen A., A reduction of the Jacobian Conjecture to the symmetric case, Proc. Amer. Math. Soc., 2005, 133(8), 2201–2205 http://dx.doi.org/10.1090/S0002-9939-05-07570-2 | Zbl 1073.14077

[6] Dillen F., Polynomials with constant Hessian determinant, J. Pure Appl. Algebra, 1991, 71(1), 13–18 http://dx.doi.org/10.1016/0022-4049(91)90037-3 | Zbl 0741.12001

[7] Druzkowski L.M., New reduction in the Jacobian conjecture, Univ. Iagel. Acta Math., 2001, 39, 203–206 | Zbl 1067.14065

[8] Druzkowski L.M., The Jacobian conjecture: symmetric reduction and solution in the symmetric cubic linear case, Ann. Polon. Math., 2005, 87, 83–92 http://dx.doi.org/10.4064/ap87-0-7 | Zbl 1098.14047

[9] van den Essen A., Polynomial Automorphisms and the Jacobian Conjecture, Progr. Math., 190, Birkhäuser, Basel, 2000 | Zbl 0962.14037

[10] van den Essen A.R.P., Hubbers E., A new class of invertible polynomial maps, J. Algebra, 1997, 187(1), 214–226 http://dx.doi.org/10.1006/jabr.1997.6788 | Zbl 0941.14002

[11] Gordan P., Nöther M., Ueber die algebraischen Formen, deren Hesse’sche Determinante identisch verschwindet, Math. Ann., 1876, 10(4), 547–568 http://dx.doi.org/10.1007/BF01442264 | Zbl 08.0064.05

[12] Meng G., Legendre transform, Hessian conjecture and tree formula, Appl. Math. Lett., 2006, 19(6), 503–510 http://dx.doi.org/10.1016/j.aml.2005.07.006 | Zbl 1132.14340