Suslin’s local-global principle asserts that if a matrix over a polynomial ring vanishes modulo the independent variable and is locally elementary then it is elementary. In this article we prove Suslin’s local-global principle for principal congruence subgroups of Chevalley groups. This result is a common generalization of the result of Abe for the absolute case and Apte, Chattopadhyay and Rao for classical groups. For the absolute case the localglobal principle was recently obtained by Petrov and Stavrova in the more general settings of isotropic reductive groups.
@article{bwmeta1.element.doi-10_2478_s11533-013-0391-9, author = {Himanee Apte and Alexei Stepanov}, title = {Local-global principle for congruence subgroups of Chevalley groups}, journal = {Open Mathematics}, volume = {12}, year = {2014}, pages = {801-812}, zbl = {1302.20047}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0391-9} }
Himanee Apte; Alexei Stepanov. Local-global principle for congruence subgroups of Chevalley groups. Open Mathematics, Tome 12 (2014) pp. 801-812. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0391-9/
[1] Abe E., Whitehead groups of Chevalley groups over polynomial rings, Comm. Algebra, 1983, 11(12), 1271–1307 http://dx.doi.org/10.1080/00927878308822906 | Zbl 0513.20030
[2] Apte H., Chattopadhyay P., Rao R.A., A local global theorem for extended ideals, J. Ramanujan Math. Soc., 2012, 27(1), 1–20 http://dx.doi.org/10.1007/s11139-011-9299-9 | Zbl 1254.19002
[3] Bak A., Nonabelian K-theory: The nilpotent class of K 1 and general stability, K-Theory, 1991, 4(4), 363–397 http://dx.doi.org/10.1007/BF00533991 | Zbl 0741.19001
[4] Bak A., Hazrat R., Vavilov N., Localization-completion strikes again: relative K 1 is nilpotent by abelian, J. Pure Appl. Algebra, 2009, 213(6), 1075–1085 http://dx.doi.org/10.1016/j.jpaa.2008.11.014 | Zbl 1167.19002
[5] Basu R., Chattopadhyay P., Rao R.A., Some remarks on symplectic injective stability, Proc. Amer. Math. Soc., 2011, 139(7), 2317–2325 http://dx.doi.org/10.1090/S0002-9939-2010-10654-8 | Zbl 1223.19001
[6] Basu R., Rao R., Injective stability for K 1 of classical modules, J. Algebra, 2010, 323(4), 867–877 http://dx.doi.org/10.1016/j.jalgebra.2009.12.012 | Zbl 1185.19001
[7] Chattopadhyay P., Rao R.A., Elementary symplectic orbits and improved K 1-stability, J. K-Theory, 2011, 7(2), 389–403 http://dx.doi.org/10.1017/is010002021jkt109 | Zbl 1218.19001
[8] Grunewald F., Mennicke J., Vaserstein L., On symplectic groups over polynomial rings, Math. Z., 1991, 206(1), 35–56 http://dx.doi.org/10.1007/BF02571323 | Zbl 0725.20038
[9] Hazrat R., Stepanov A., Vavilov N., Zhang Z., The yoga of commutators, J. Math. Sci. (N.Y.), 2011, 179(6), 662–678 http://dx.doi.org/10.1007/s10958-011-0617-y | Zbl 1318.20049
[10] Hazrat R., Vavilov N., Zhang Z., Relative unitary commutator calculus, and applications, J. Algebra, 2011, 343, 107–137 http://dx.doi.org/10.1016/j.jalgebra.2011.07.003 | Zbl 1245.20064
[11] Hazrat R., Vavilov N., Zhang Z., Relative commutator calculus in Chevalley groups, J. Algebra, 2013, 385, 262–293 http://dx.doi.org/10.1016/j.jalgebra.2013.03.011 | Zbl 1292.20053
[12] Hazrat R., Vavilov N., Zhang Z., Multiple commutator formulas for unitary groups, preprint available at http://arxiv.org/abs/1205.6866v1 | Zbl 1245.20064
[13] Hazrat R., Zhang Z., Multiple commutator formulas, Israel J. Math., 2013, 195(1), 481–505 http://dx.doi.org/10.1007/s11856-012-0135-8 | Zbl 1292.20054
[14] Jose S., Rao R.A., A local global principle for the elementary unimodular vector group, In: Commutative Algebra and Algebraic Geometry, Contemp. Math., 390, American Mathematical Society, Providence, 2005, 119–125 http://dx.doi.org/10.1090/conm/390/07298
[15] Mason A.W., On subgroups of GL(n, A) which are generated by commutators. II, J. Reine Angew. Math., 1981, 322, 118–135 | Zbl 0438.20034
[16] Petrov V.A., Stavrova A.K., Elementary subgroups in isotropic reductive groups, St. Petersburg Math. J., 2009, 20(4), 625–644 http://dx.doi.org/10.1090/S1061-0022-09-01064-4 | Zbl 1206.20053
[17] Quillen D., Projective modules over polynomial rings, Invent. Math., 1976, 36, 167–171 http://dx.doi.org/10.1007/BF01390008 | Zbl 0337.13011
[18] Rao R.A., Basu R., Jose S., Injective stability for K 1 of the orthogonal group, J. Algebra, 2010, 323(2), 393–396 http://dx.doi.org/10.1016/j.jalgebra.2009.09.022 | Zbl 1195.19001
[19] Stavrova A., Homotopy invariance of non-stable K 1-functors, J. K-Theory (in press), DOI: 10.1017/is013006012jkt232
[20] Stepanov A., Vavilov N., On the length of commutators in Chevalley groups, Israel J. Math., 2011, 185, 253–276 http://dx.doi.org/10.1007/s11856-011-0109-2 | Zbl 1262.20054
[21] Suslin A.A., On the structure of the special linear group over polynomial rings, Math. USSR-Izv., 1977, 11(2), 221–238 http://dx.doi.org/10.1070/IM1977v011n02ABEH001709 | Zbl 0378.13002
[22] Suslin A.A., Kopeiko V.I., Quadratic modules and the orthogonal group over polynomial rings, J. Soviet Math., 1982, 20(6), 2665–2691 http://dx.doi.org/10.1007/BF01681481 | Zbl 0497.20038
[23] Taddei G., Normalité des groupes élémentaires dans les groupes de Chevalley sur un anneau, In: Applications of Algebraic K-Theory to Algebraic Geometry and Number Theory, Contemp. Math., 55, American Mathematical Society, Providence, 1986, 693–710 http://dx.doi.org/10.1090/conm/055.2/1862660
[24] Tits J., Systèmes générateurs de groupes de congruence, C. R. Acad. Sci. Paris, 1976, 283(9), A693–A695 | Zbl 0381.14005
[25] Vaserstein L.N., On the normal subgroups of GLn over a ring, In: Algebraic K-Theory, Lecture Notes in Math., 854, Springer, Berlin-New York, 1981, 456–465
[26] Vaserstein L.N., On normal subgroups of Chevalley groups over commutative rings, Tohoku Math. J., 1986, 38(2), 219–230 http://dx.doi.org/10.2748/tmj/1178228489 | Zbl 0578.20036
[27] Vavilov N.A., Stepanov A.V., Standard commutator formulae, Vestnik St. Petersburg Univ. Math., 2008, 41(1), 5–8 http://dx.doi.org/10.3103/S1063454108010020
[28] Vavilov N.A., Stepanov A.V., Standard commutator formulae, revisited, Vestnik St. Petersburg Univ. Math., 2010, 43(1), 2010, 12–17 http://dx.doi.org/10.3103/S1063454110010036
[29] Wendt M., A1-homotopy of Chevalley groups, J. K-Theory, 2010, 5(2), 245–287 http://dx.doi.org/10.1017/is010001014jkt096 | Zbl 1200.14039