Functor of extension in Hilbert cube and Hilbert space
Piotr Niemiec
Open Mathematics, Tome 12 (2014), p. 887-895 / Harvested from The Polish Digital Mathematics Library

It is shown that if Ω = Q or Ω = ℓ 2, then there exists a functor of extension of maps between Z-sets in Ω to mappings of Ω into itself. This functor transforms homeomorphisms into homeomorphisms, thus giving a functorial setting to a well-known theorem of Anderson [Anderson R.D., On topological infinite deficiency, Michigan Math. J., 1967, 14, 365–383]. It also preserves convergence of sequences of mappings, both pointwise and uniform on compact sets, and supremum distances as well as uniform continuity, Lipschitz property, nonexpansiveness of maps in appropriate metrics.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:269407
@article{bwmeta1.element.doi-10_2478_s11533-013-0386-6,
     author = {Piotr Niemiec},
     title = {Functor of extension in Hilbert cube and Hilbert space},
     journal = {Open Mathematics},
     volume = {12},
     year = {2014},
     pages = {887-895},
     zbl = {1307.54021},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0386-6}
}
Piotr Niemiec. Functor of extension in Hilbert cube and Hilbert space. Open Mathematics, Tome 12 (2014) pp. 887-895. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0386-6/

[1] Anderson R.D., Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc., 1966, 72(3), 515–519 http://dx.doi.org/10.1090/S0002-9904-1966-11524-0 | Zbl 0137.09703

[2] Anderson R.D., On topological infinite deficiency, Michigan Math. J., 1967, 14, 365–383 http://dx.doi.org/10.1307/mmj/1028999787 | Zbl 0148.37202

[3] Anderson R.D., McCharen J.D., On extending homeomorphisms to Fréchet manifolds, Proc. Amer. Math. Soc., 1970, 25(2), 283–289 | Zbl 0203.25805

[4] Aronszajn N., Panitchpakdi P., Extension of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math., 1956, 6(3), 405–439 http://dx.doi.org/10.2140/pjm.1956.6.405 | Zbl 0074.17802

[5] Banakh T.O., Topology of spaces of probability measures I. The functors τ τ and P^ , Mat. Stud., 1995, 5, 65–87 (in Russian)

[6] Banakh T.O., Topology of spaces of probability measures II. Barycenters of Radon probability measures and the metrization of the functors τ τ and P^ , Mat. Stud., 1995, 5, 88–106 (in Russian) | Zbl 1023.28502

[7] Bessaga Cz., Pełczyński A., On spaces of measurable functions, Studia Math., 1972, 44, 597–615 | Zbl 0256.46048

[8] Bessaga Cz., Pełczyński A., Selected Topics in Infinite-Dimensional Topology, IMPAN Monogr. Mat., 58, PWN, Warsaw, 1975 | Zbl 0304.57001

[9] Chapman T.A., Deficiency in infinite-dimensional manifolds, General Topology Appl., 1971, 1, 263–272 http://dx.doi.org/10.1016/0016-660X(71)90097-3

[10] Halmos P.R., Measure Theory, Van Nostrand, New York, 1950 http://dx.doi.org/10.1007/978-1-4684-9440-2

[11] Keller O.-H., Die Homoiomorphie der kompakten konvexen Mengen im Hilbertschen Raum, Math. Ann., 1931, 105, 748–758 http://dx.doi.org/10.1007/BF01455844 | Zbl 57.1523.01

[12] Klee V.L. Jr., Invariant metrics in groups (solution of a problem of Banach), Proc. Amer. Math. Soc., 1952, 3(3), 484–487 http://dx.doi.org/10.1090/S0002-9939-1952-0047250-4 | Zbl 0047.02902

[13] Kuratowski K., Mostowski A., Set Theory, 2nd ed., PWN, Warsaw, 1976

[14] Niemiec P., Spaces of measurable functions, Cent. Eur. J. Math., 2013, 11(7), 1304–1316 http://dx.doi.org/10.2478/s11533-013-0236-6 | Zbl 1277.54021

[15] Takesaki M., Theory of Operator Algebras. I, Encyclopaedia Math. Sci., 124, Springer, Berlin, 2002

[16] Toruńczyk H., Characterizing Hilbert space topology, Fund. Math., 1981, 111(3), 247–262 | Zbl 0468.57015

[17] Toruńczyk H., A correction of two papers concerning Hilbert manifolds: “Concerning locally homotopy negligible sets and characterization of l 2-manifolds” and “Characterizing Hilbert space topology”, Fund. Math., 1985, 125, 89–93