It is shown that if Ω = Q or Ω = ℓ 2, then there exists a functor of extension of maps between Z-sets in Ω to mappings of Ω into itself. This functor transforms homeomorphisms into homeomorphisms, thus giving a functorial setting to a well-known theorem of Anderson [Anderson R.D., On topological infinite deficiency, Michigan Math. J., 1967, 14, 365–383]. It also preserves convergence of sequences of mappings, both pointwise and uniform on compact sets, and supremum distances as well as uniform continuity, Lipschitz property, nonexpansiveness of maps in appropriate metrics.
@article{bwmeta1.element.doi-10_2478_s11533-013-0386-6, author = {Piotr Niemiec}, title = {Functor of extension in Hilbert cube and Hilbert space}, journal = {Open Mathematics}, volume = {12}, year = {2014}, pages = {887-895}, zbl = {1307.54021}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0386-6} }
Piotr Niemiec. Functor of extension in Hilbert cube and Hilbert space. Open Mathematics, Tome 12 (2014) pp. 887-895. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0386-6/
[1] Anderson R.D., Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc., 1966, 72(3), 515–519 http://dx.doi.org/10.1090/S0002-9904-1966-11524-0 | Zbl 0137.09703
[2] Anderson R.D., On topological infinite deficiency, Michigan Math. J., 1967, 14, 365–383 http://dx.doi.org/10.1307/mmj/1028999787 | Zbl 0148.37202
[3] Anderson R.D., McCharen J.D., On extending homeomorphisms to Fréchet manifolds, Proc. Amer. Math. Soc., 1970, 25(2), 283–289 | Zbl 0203.25805
[4] Aronszajn N., Panitchpakdi P., Extension of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math., 1956, 6(3), 405–439 http://dx.doi.org/10.2140/pjm.1956.6.405 | Zbl 0074.17802
[5] Banakh T.O., Topology of spaces of probability measures I. The functors τ τ and , Mat. Stud., 1995, 5, 65–87 (in Russian)
[6] Banakh T.O., Topology of spaces of probability measures II. Barycenters of Radon probability measures and the metrization of the functors τ τ and , Mat. Stud., 1995, 5, 88–106 (in Russian) | Zbl 1023.28502
[7] Bessaga Cz., Pełczyński A., On spaces of measurable functions, Studia Math., 1972, 44, 597–615 | Zbl 0256.46048
[8] Bessaga Cz., Pełczyński A., Selected Topics in Infinite-Dimensional Topology, IMPAN Monogr. Mat., 58, PWN, Warsaw, 1975 | Zbl 0304.57001
[9] Chapman T.A., Deficiency in infinite-dimensional manifolds, General Topology Appl., 1971, 1, 263–272 http://dx.doi.org/10.1016/0016-660X(71)90097-3
[10] Halmos P.R., Measure Theory, Van Nostrand, New York, 1950 http://dx.doi.org/10.1007/978-1-4684-9440-2
[11] Keller O.-H., Die Homoiomorphie der kompakten konvexen Mengen im Hilbertschen Raum, Math. Ann., 1931, 105, 748–758 http://dx.doi.org/10.1007/BF01455844 | Zbl 57.1523.01
[12] Klee V.L. Jr., Invariant metrics in groups (solution of a problem of Banach), Proc. Amer. Math. Soc., 1952, 3(3), 484–487 http://dx.doi.org/10.1090/S0002-9939-1952-0047250-4 | Zbl 0047.02902
[13] Kuratowski K., Mostowski A., Set Theory, 2nd ed., PWN, Warsaw, 1976
[14] Niemiec P., Spaces of measurable functions, Cent. Eur. J. Math., 2013, 11(7), 1304–1316 http://dx.doi.org/10.2478/s11533-013-0236-6 | Zbl 1277.54021
[15] Takesaki M., Theory of Operator Algebras. I, Encyclopaedia Math. Sci., 124, Springer, Berlin, 2002
[16] Toruńczyk H., Characterizing Hilbert space topology, Fund. Math., 1981, 111(3), 247–262 | Zbl 0468.57015
[17] Toruńczyk H., A correction of two papers concerning Hilbert manifolds: “Concerning locally homotopy negligible sets and characterization of l 2-manifolds” and “Characterizing Hilbert space topology”, Fund. Math., 1985, 125, 89–93