In this paper, we develop the approach and techniques of [Boucherif A., Precup R., Semilinear evolution equations with nonlocal initial conditions, Dynam. Systems Appl., 2007, 16(3), 507–516], [Zhou Y., Jiao F., Nonlocal Cauchy problem for fractional evolution equations, Nonlinar Anal. Real World Appl., 2010, 11(5), 4465–4475] to deal with nonlocal Cauchy problem for semilinear fractional order evolution equations. We present two new sufficient conditions on existence of mild solutions. The first result relies on a growth condition on the whole time interval via Schaefer fixed point theorem. The second result relies on a growth condition splitted into two parts, one for the subinterval containing the points associated with the nonlocal conditions, and the other for the rest of the interval via O’Regan fixed point theorem.
@article{bwmeta1.element.doi-10_2478_s11533-013-0381-y, author = {JinRong Wang and Yong Zhou and Michal Fe\v ckan}, title = {On the nonlocal Cauchy problem for semilinear fractional order evolution equations}, journal = {Open Mathematics}, volume = {12}, year = {2014}, pages = {911-922}, zbl = {1296.26035}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0381-y} }
JinRong Wang; Yong Zhou; Michal Fečkan. On the nonlocal Cauchy problem for semilinear fractional order evolution equations. Open Mathematics, Tome 12 (2014) pp. 911-922. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0381-y/
[1] Baleanu D., Machado J.A.T., Luo A.C.J. (Eds.), Fractional Dynamics and Control, Springer, New York, 2012
[2] Boucherif A., Precup R., On the nonlocal initial value problem for first order differential equations, Fixed Point Theory, 2003, 4(2), 205–212 | Zbl 1050.34001
[3] Boucherif A., Precup R., Semilinear evolution equations with nonlocal initial conditions, Dynam. Systems Appl., 2007, 16(3), 507–516 | Zbl 1154.34027
[4] Boulite S., Idrissi A., Maniar L., Controllability of semilinear boundary problems with nonlocal initial conditions, J. Math. Anal. Appl., 2006, 316(2), 566–578 http://dx.doi.org/10.1016/j.jmaa.2005.05.006 | Zbl 1105.34036
[5] Byszewski L., Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl., 1991, 162(2), 494–505 http://dx.doi.org/10.1016/0022-247X(91)90164-U | Zbl 0748.34040
[6] Byszewski L., Lakshmikantham V., Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space, Appl. Anal., 1991, 40(1), 11–19 http://dx.doi.org/10.1080/00036819008839989 | Zbl 0694.34001
[7] Chang Y.-K., Nieto J.J., Li W.-S., On impulsive hyperbolic differential inclusions with nonlocal initial conditions, J. Optim. Theory Appl., 2009, 140(3), 431–442 http://dx.doi.org/10.1007/s10957-008-9468-1 | Zbl 1159.49042
[8] Deng K., Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions, J. Math. Anal. Appl., 1993, 179(2), 630–637 http://dx.doi.org/10.1006/jmaa.1993.1373 | Zbl 0798.35076
[9] Diethelm K., The Analysis of Fractional Differential Equations, Lecture Notes in Math., 2004, Springer, Berlin, 2010 http://dx.doi.org/10.1007/978-3-642-14574-2
[10] Dong X., Wang J., Zhou Y., On nonlocal problems for fractional differential equations in Banach spaces, Opuscula Math., 2011, 31(3), 341–357 http://dx.doi.org/10.7494/OpMath.2011.31.3.341 | Zbl 1228.26012
[11] Fan Z., Impulsive problems for semilinear differential equations with nonlocal conditions, Nonlinear Anal., 2010, 72(2), 1104–1109 http://dx.doi.org/10.1016/j.na.2009.07.049 | Zbl 1188.34073
[12] Fan Z., Li G., Existence results for semilinear differential equations with nonlocal and impulsive conditions, J. Funct. Anal., 2010, 258(5), 1709–1727 http://dx.doi.org/10.1016/j.jfa.2009.10.023 | Zbl 1193.35099
[13] Fu X., Ezzinbi K., Existence of solutions for neutral functional differential evolution equations with nonlocal conditions, Nonlinear Anal., 2003, 54(2), 215–227 http://dx.doi.org/10.1016/S0362-546X(03)00047-6 | Zbl 1034.34096
[14] Jackson D., Existence and uniqueness of solutions to semilinear nonlocal parabolic equations, J. Math. Anal. Appl., 1993, 172(1), 256–265 http://dx.doi.org/10.1006/jmaa.1993.1022 | Zbl 0814.35060
[15] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud., 204, Elsevier, Amsterdam, 2006 http://dx.doi.org/10.1016/S0304-0208(06)80001-0
[16] Lakshmikantham V., Leela S., Devi J.V., Theory of Fractional Dynamic Systems, Cambridge Scientific Publishers, Cottenham, 2009 | Zbl 1188.37002
[17] Liang J., Liu J., Xiao T.-J., Nonlocal Cauchy problems governed by compact operator families, Nonlinear Anal. TMA, 1994, 57(2), 183–189 http://dx.doi.org/10.1016/j.na.2004.02.007 | Zbl 1083.34045
[18] Liu H., Chang J.-C., Existence for a class of partial differential equations with nonlocal conditions, Nonlinear Anal., 2009, 70(9), 3076–3083 http://dx.doi.org/10.1016/j.na.2008.04.009 | Zbl 1170.34346
[19] Michalski M.W., Derivatives of Noninteger Order and Their Applications, Dissertationes Math. (Rozprawy Mat.), 328, Polish Academy of Sciences, Warsaw, 1993 | Zbl 0880.26007
[20] Miller K.S., Ross B., An introduction to the fractional calculus and differential equations, Wiley-Intersci. Publ., John Wiley & Sons, New York, 1993 | Zbl 0789.26002
[21] N’Guérékata G.M., A Cauchy problem for some fractional differential abstract differential equation with non local conditions, Nonlinear Anal., 2009, 70(5), 1873–1876 http://dx.doi.org/10.1016/j.na.2008.02.087 | Zbl 1166.34320
[22] N’Guérékata G.M., Corrigendum: A Cauchy problem for some fractional differential equations, Commun. Math. Anal., 2009, 7(1), 11
[23] Nica O., Initial value problems for first-order differential systems with general nonlocal conditions, Electron. J. Differential Equations, 2012, #74 | Zbl 1261.34016
[24] Nica O., Precup R., On the nonlocal initial value problem for first order differential systems, Stud. Univ. Babe?-Bolyai Math., 2001, 56(3), 113–125
[25] Ntouyas S.K., Tsamatos P.Ch., Global existence for semilinear evolution equations with nonlocal conditions, J. Math. Anal. Appl., 1997, 210(2), 679–687 http://dx.doi.org/10.1006/jmaa.1997.5425
[26] O’Regan D., Fixed-point theory for the sum of two operators, Appl. Math. Lett., 1996, 9(1), 1–8 http://dx.doi.org/10.1016/0893-9659(95)00093-3
[27] Podlubny I., Fractional Differential Equations, Math. Sci. Engrg., 198, Academic Press, San Diego, 1999
[28] Smart D.R., Fixed Point Theorems, Cambridge Tracts in Math., 66, Cambridge University Press, London-New York, 1974
[29] Tarasov V.E., Fractional Dynamics, Nonlinear Phys. Sci., Springer, Heidelberg, 2010 http://dx.doi.org/10.1007/978-3-642-14003-7
[30] Tatar N., Existence results for an evolution problem with fractional nonlocal conditions, Comput. Math. Appl., 2010, 60(11), 2971–2982 http://dx.doi.org/10.1016/j.camwa.2010.09.057 | Zbl 1207.34099
[31] Wang J., Zhou Y., A class of fractional evolution equations and optimal controls, Nonlinear Anal. Real World Appl., 2011, 12(1), 262–272 http://dx.doi.org/10.1016/j.nonrwa.2010.06.013 | Zbl 1214.34010
[32] Wang J., Zhou Y., Analysis of nonlinear fractional control systems in Banach spaces, Nonlinear Anal., 2011, 74(17), 5929–5942 http://dx.doi.org/10.1016/j.na.2011.05.059 | Zbl 1223.93059
[33] Wang J., Zhou Y., Fečkan M., Alternative results and robustness for fractional evolution equations with periodic boundary conditions, Electron. J. Qual. Theory Diff. Equ., 2011, #97 | Zbl 06528101
[34] Wang J., Zhou Y., Fečkan M., Abstract Cauchy problem for fractional differential equations, Nonlinear Dynam., 2013, 71(4), 685–700 http://dx.doi.org/10.1007/s11071-012-0452-9 | Zbl 1268.34034
[35] Xue X., Nonlinear differential equations with nonlocal conditions in Banach spaces, Nonlinear Anal., 2005, 63(4), 575–586 http://dx.doi.org/10.1016/j.na.2005.05.019 | Zbl 1095.34040
[36] Zhou Y., Jiao F., Nonlocal Cauchy problem for fractional evolution equations, Nonlinar Anal. Real World Appl., 2010, 11(5), 4465–4475 http://dx.doi.org/10.1016/j.nonrwa.2010.05.029 | Zbl 1260.34017
[37] Zhou Y., Jiao F., Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 2010, 59(3), 1063–1077 http://dx.doi.org/10.1016/j.camwa.2009.06.026 | Zbl 1189.34154