The cone of nonnegative polynomials with nonnegative coefficients and linear operators preserving this cone
Olga Katkova ; Anna Vishnyakova
Open Mathematics, Tome 12 (2014), p. 752-760 / Harvested from The Polish Digital Mathematics Library

Let be the cone of real univariate polynomials of degree ≤ 2n which are nonnegative on the real axis and have nonnegative coefficients. We describe the extremal rays of this convex cone and the class of linear operators, acting diagonally in the standard monomial basis, preserving this cone.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:269561
@article{bwmeta1.element.doi-10_2478_s11533-013-0380-z,
     author = {Olga Katkova and Anna Vishnyakova},
     title = {The cone of nonnegative polynomials with nonnegative coefficients and linear operators preserving this cone},
     journal = {Open Mathematics},
     volume = {12},
     year = {2014},
     pages = {752-760},
     zbl = {1291.11063},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0380-z}
}
Olga Katkova; Anna Vishnyakova. The cone of nonnegative polynomials with nonnegative coefficients and linear operators preserving this cone. Open Mathematics, Tome 12 (2014) pp. 752-760. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0380-z/

[1] Akhiezer N.I., The Classical Moment Problem and Some Related Questions in Analysis, Hafner Publishing, New York, 1965 | Zbl 0135.33803

[2] Girsanov I.V., Lectures on Mathematical Theory of Extremum Problems, Lecture Notes in Econom. and Math. Systems, 67, Springer, Berlin-New York, 1972 | Zbl 0234.49016

[3] Guterman A., Shapiro B., On linear operators preserving the set of positive polynomials, J. Fixed Point Theory Appl., 2008, 3(2), 411–429 http://dx.doi.org/10.1007/s11784-008-0084-3 | Zbl 1160.12002

[4] Hamburger H., Über eine Erweiterung des Stieltjesschen Momentenproblems, I, II, III, Math. Ann., 1920, 1920, 1921, 81(2–4), 82(1–2), 82(3–4), 235–319, 120–164, 168–187 http://dx.doi.org/10.1007/BF01564869

[5] Katkova O.M., Vishnyakova A.M., Linear operators preserving the set of positive (nonnegative) polynomials, In: Positive Systems, Valencia, September 2–4, 2009, Lecture Notes in Control and Inform. Sci., 389, Springer, Berlin, 2009, 83–90 | Zbl 1182.93061

[6] Krein M.G., Nudelman A.A., The Markov Moment Problem and Extremal Problems, Transl. Math. Monogr., 50, American Mathematical Society, Providence, 1977

[7] Pólya G., Szegő G., Problems and Theorems in Analysis, II, Classics Math., Springer, Berlin, 1998 | Zbl 1024.00003

[8] Schur I., Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen, J. Reine Angew. Math., 1911, 140, 1–28 | Zbl 42.0367.01