Associated with some properties of weighted composition operators on the spaces of bounded harmonic and analytic functions on the open unit disk , we obtain conditions in terms of behavior of weight functions and analytic self-maps on the interior and on the boundary respectively. We give direct proofs of the equivalence of these interior and boundary conditions. Furthermore we give another proof of the estimate for the essential norm of the difference of weighted composition operators.
@article{bwmeta1.element.doi-10_2478_s11533-013-0377-7, author = {Kei Izuchi and Yuko Izuchi and Sh\^uichi Ohno}, title = {Boundary vs. interior conditions associated with weighted composition operators}, journal = {Open Mathematics}, volume = {12}, year = {2014}, pages = {761-777}, zbl = {1307.47033}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0377-7} }
Kei Izuchi; Yuko Izuchi; Shûichi Ohno. Boundary vs. interior conditions associated with weighted composition operators. Open Mathematics, Tome 12 (2014) pp. 761-777. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0377-7/
[1] Bonet J., Lindström M., Wolf E., Differences of composition operators between weighted Banach spaces of holomorphic functions, J. Aust. Math. Soc., 2008, 84(1), 9–20 http://dx.doi.org/10.1017/S144678870800013X | Zbl 1145.47020
[2] Choa J.S., Izuchi K.J., Ohno S., Composition operators on the space of bounded harmonic functions, Integral Equations Operator Theory, 2008, 61(2), 167–186 http://dx.doi.org/10.1007/s00020-008-1579-4 | Zbl 1155.47027
[3] Contreras M.D., Díaz-Madrigal S., Compact-type operators defined on Hsui, In: Function Spaces, Edwardsville, May 19–23, 1998, Contemp. Math., 232, American Mathematical Society, Providence, 1999, 111–118 | Zbl 0936.46010
[4] Cowen C.C., MacCluer B.D., Composition Operators on Spaces of Analytic Functions, Stud. Adv. Math., CRC Press, Boca Raton, 1995 | Zbl 0873.47017
[5] Galindo P., Lindström M., Essential norm of operators on weighted Bergman spaces of infinite order, J. Operator Theory, 2010, 64(2), 387–399 | Zbl 1211.47064
[6] Gamelin T.W., Uniform Algebras, Prentice-Hall, Englewood Cliffs, 1969 | Zbl 0213.40401
[7] Garnett J.B., Bounded Analytic Functions, Pure Appl. Math., 96, Academic Press, New York-London, 1981
[8] Hosokawa T., Izuchi K., Essential norms of differences of composition operators on H ∞, J. Math. Soc. Japan, 2005, 57(3), 669–690 http://dx.doi.org/10.2969/jmsj/1158241928 | Zbl 1100.47022
[9] Hosokawa T., Izuchi K., Ohno S., Topological structure of the space of weighted composition operators on H 1, Integral Equations Operator Theory, 2005, 53(4), 509–526 http://dx.doi.org/10.1007/s00020-004-1337-1 | Zbl 1098.47025
[10] Izuchi K.J., Izuchi Y., Ohno S., Weighted composition operators on the space of bounded harmonic functions, Integral Equations Operator Theory, 2011, 71(1), 91–111 http://dx.doi.org/10.1007/s00020-011-1886-z | Zbl 1241.47023
[11] Izuchi K.J., Izuchi Y., Ohno S., Path connected components in weighted composition operators on h ∞ and H ∞ with the operator norm, Trans. Amer. Math. Soc., 2013, 365(7), 3593–3612 http://dx.doi.org/10.1090/S0002-9947-2012-05730-8 | Zbl 1282.47048
[12] Izuchi K.J., Izuchi Y., Ohno S., Path connected components in weighted composition operators on h ∞ and H ∞ with the essential operator norm, Houston J. Math. (in press) | Zbl 1303.47045
[13] Lindström M., Wolf E., Essential norm of the difference of weighted composition operators, Monatsh. Math., 2008, 153(2), 133–143 http://dx.doi.org/10.1007/s00605-007-0493-1 | Zbl 1146.47015
[14] MacCluer B., Ohno S., Zhao R., Topological structure of the space of composition operators on H ∞, Integral Equations Operator Theory, 2001, 40(4), 481–494 http://dx.doi.org/10.1007/BF01198142 | Zbl 1062.47511
[15] Moorhouse J., Compact differences of composition operators, J. Funct. Anal., 2005, 219(1), 70–92 http://dx.doi.org/10.1016/j.jfa.2004.01.012 | Zbl 1087.47032
[16] Nieminen P.J., Saksman E., On compactness of the difference of composition operators, J. Math. Anal. Appl., 2004, 298(2), 501–522 http://dx.doi.org/10.1016/j.jmaa.2004.05.024 | Zbl 1072.47021
[17] Rudin W., Real and Complex Analysis, 3rd ed., McGraw-Hill, New York, 1987 | Zbl 0925.00005
[18] Shapiro J.H., Composition Operators and Classical Function Theory, Universitext Tracts Math., Springer, New York, 1993 | Zbl 0791.30033
[19] Shapiro J.H., Sundberg C., Isolation amongst the composition operators, Pacific J. Math., 1990, 145(1), 117–152 http://dx.doi.org/10.2140/pjm.1990.145.117 | Zbl 0732.30027