Using the Berline-Vergne integration formula for equivariant cohomology for torus actions, we prove that integrals over Grassmannians (classical, Lagrangian or orthogonal ones) of characteristic classes of the tautological bundle can be expressed as iterated residues at infinity of some holomorphic functions of several variables. The results obtained for these cases can be expressed as special cases of one formula involving the Weyl group action on the characters of the natural representation of the torus.
@article{bwmeta1.element.doi-10_2478_s11533-013-0372-z, author = {Magdalena Zielenkiewicz}, title = {Integration over homogeneous spaces for classical Lie groups using iterated residues at infinity}, journal = {Open Mathematics}, volume = {12}, year = {2014}, pages = {574-583}, zbl = {1300.57035}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0372-z} }
Magdalena Zielenkiewicz. Integration over homogeneous spaces for classical Lie groups using iterated residues at infinity. Open Mathematics, Tome 12 (2014) pp. 574-583. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0372-z/
[1] Atiyah M.F., Bott R., The moment map and equivariant cohomology, Topology, 1984, 23(1), 1–28 http://dx.doi.org/10.1016/0040-9383(84)90021-1 | Zbl 0521.58025
[2] Bérczi G., Szenes A., Thom polynomials of Morin singularities, Ann. of Math., 2012, 175(2), 567–629 http://dx.doi.org/10.4007/annals.2012.175.2.4 | Zbl 1247.58021
[3] Berline N., Vergne M., Zéros d’un champ de vecteurs et classes caractéristiques équivariantes, Duke Math. J., 1983, 50(2), 539–549 http://dx.doi.org/10.1215/S0012-7094-83-05024-X | Zbl 0515.58007
[4] Borel A., Seminar on Transformation Groups, Ann. of Math. Stud., 46, Princeton University Press, Princeton, 1960
[5] Fehér L.M., Rimányi R., Thom series of contact singularities, Ann. of Math., 2012, 176(3), 1381–1426 http://dx.doi.org/10.4007/annals.2012.176.3.1 | Zbl 1264.32023
[6] Fulton W., Harris J., Representation Theory, Grad. Texts in Math., 129, Springer, New York, 1991 http://dx.doi.org/10.1007/978-1-4612-0979-9
[7] Ginzburg V.A., Equivariant cohomology and Kähler geometry, Functional Anal. Appl., 1987, 21(4), 271–283 http://dx.doi.org/10.1007/BF01077801 | Zbl 0656.53062
[8] Hsiang W., Cohomology Theory of Topological Transformation Groups, Ergeb. Math. Grenzgeb., 85, Springer, New York-Heidelberg, 1975 http://dx.doi.org/10.1007/978-3-642-66052-8
[9] Jeffrey L.C., Kirwan F.C., Localization for nonabelian group actions, Topology, 1995, 34(2), 291–327 http://dx.doi.org/10.1016/0040-9383(94)00028-J
[10] Jeffrey L.C., Kirwan F.C., Intersection theory on moduli spaces of holomorphic bundles of arbitrary rank on a Riemann surface, Ann. of Math., 1998, 148(1), 109–196 http://dx.doi.org/10.2307/120993 | Zbl 0949.14021
[11] Kazarian M., On Lagrange and symmetric degeneracy loci, preprint available at http://www.newton.ac.uk/preprints/NI00028.pdf
[12] Quillen D., The spectrum of an equivariant cohomology ring: I, Ann. of Math., 1971, 94(3), 549–572 http://dx.doi.org/10.2307/1970770 | Zbl 0247.57013
[13] Rimányi R., Quiver polynomials in iterated residue form, preprint available at http://arxiv.org/abs/1302.2580 | Zbl 06376534
[14] Weber A., Equivariant Chern classes and localization theorem, J. Singul., 2012, 5, 153–176 | Zbl 1292.14009