Abelian varieties over fields of finite characteristic
Yuri Zarhin
Open Mathematics, Tome 12 (2014), p. 659-674 / Harvested from The Polish Digital Mathematics Library

The aim of this paper is to extend our previous results about Galois action on the torsion points of abelian varieties to the case of (finitely generated) fields of characteristic 2.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:269226
@article{bwmeta1.element.doi-10_2478_s11533-013-0370-1,
     author = {Yuri Zarhin},
     title = {Abelian varieties over fields of finite characteristic},
     journal = {Open Mathematics},
     volume = {12},
     year = {2014},
     pages = {659-674},
     zbl = {1296.11068},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0370-1}
}
Yuri Zarhin. Abelian varieties over fields of finite characteristic. Open Mathematics, Tome 12 (2014) pp. 659-674. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0370-1/

[1] Bosch S., Lütkebohmert W., Raynaud M., Néron Models, Ergeb. Math. Grenzgeb., 21, Springer, Berlin, 1990

[2] Curtis Ch.W., Reiner I., Representation Theory of Finite Groups and Associative Algebras, Wiley Classics Library, John Wiley & Sons, New York, 1962 | Zbl 0131.25601

[3] Faltings G., Complements to Mordell, In: Rational Points, Bonn, 1983/84, Aspects Math., E6, Vieweg, Braunschweig, 1984, 203–227

[4] Grothendieck A. (Ed.), Revêtements Étales et Groupe Fondamental (SGA 1), Lecture Notes in Math., 224, Springer, Berlin, 1971

[5] Grothendieck A., Modèles de Néron et monodromie, Éxpose IX dans SGA7, I, Lecture Notes in Math., 288, Springer, Berlin, 1972, 313–523

[6] Lang S., Algebra, Addison-Wesley, Reading, 1965

[7] Lenstra H.W. Jr., Oort F., Zarhin Yu.G., Abelian subvarieties, J. Algebra, 1996, 180(2), 513–516 http://dx.doi.org/10.1006/jabr.1996.0079

[8] Moret-Bailly L., Pinceaux de Variétés Abéliennes, Astérisque, 129, Paris, 1985 | Zbl 0595.14032

[9] Mumford D., Abelian Varieties, 2nd ed., Oxford University Press, London, 1974

[10] Oort F., The isogeny class of a CM-type abelian variety is defined over a finite extension of the prime field, J. Pure Appl. Algebra, 1973, 3, 399–408 http://dx.doi.org/10.1016/0022-4049(73)90040-6 | Zbl 0272.14009

[11] Serre J.-P., Sur les groupes des congruence des variétés abéliennes, Izv. Akad. Nauk SSSR Ser. Mat., 1964, 28, 3–20 | Zbl 0128.15601

[12] Serre J.-P., Corps Locaux, 2nd ed., Publications de l’Université de Nancago, VIII, Hermann, Paris, 1968

[13] Serre J.-P., Représentations Linéares des Groupes Finis, 3rd ed., Hermann, Paris, 1978

[14] Serre J.-P., Abelian ℓ-Adic Representations and Elliptic Curves, 2nd ed., Advanced Book Classics, Addison-Wesley, Redwood City, 1989

[15] Skorobogatov A.N., Zarhin Yu.G., A finiteness theorem for the Brauer group of abelian varieties and K3 surfaces, J. Algebraic Geometry, 2008, 17(3), 481–502 http://dx.doi.org/10.1090/S1056-3911-07-00471-7 | Zbl 1157.14008

[16] Tate J., Endomorphisms of abelian varieties over finite fields, Invent. Math., 1966, 2, 134–144 http://dx.doi.org/10.1007/BF01404549 | Zbl 0147.20303

[17] Zarhin Ju.G., Endomorphisms of Abelian varieties over fields of finite characteristic, Math. USSR-Izv., 1975, 9, 255–260 http://dx.doi.org/10.1070/IM1975v009n02ABEH001476 | Zbl 0345.14014

[18] Zarkhin Yu.G., Abelian varieties in characteristic p, Math. Notes, 1976, 19(3), 240–244 http://dx.doi.org/10.1007/BF01437858 | Zbl 0342.14011

[19] Zarkhin Yu.G., Endomorphisms of Abelian varieties and points of finite order in characteristic p, Math. Notes, 1977, 21(6), 415–419 http://dx.doi.org/10.1007/BF01410167 | Zbl 0399.14027

[20] Zarkhin Yu.G., Torsion of Abelian varieties in fininite characteristic, Math. Notes, 1977, 22(1), 493–498 http://dx.doi.org/10.1007/BF01147687

[21] Zarkhin Yu.G., Homomorphisms of Abelian varieties and points of finite order over fields of finite characteristic, In: Problems in Group Theory and Homological Algebra, Yaroslav. Gos. Univ., Yaroslavl, 1981, 146–147 (in Russian)

[22] Zarhin Yu.G., A finiteness theorem for unpolarized Abelian varieties over number fields with prescribed places of bad reduction, Invent. Math., 1985, 79(2), 309–321 http://dx.doi.org/10.1007/BF01388976 | Zbl 0557.14024

[23] Zarhin Yu.G., Endomorphisms and torsion of abelian varieties, Duke Math. J., 1987, 54(1), 131–145 http://dx.doi.org/10.1215/S0012-7094-87-05410-X

[24] Zarhin Yu.G., Hyperelliptic Jacobians without complex multiplication in positive characteristic, Math. Res. Lett., 2001, 8(4), 429–435 http://dx.doi.org/10.4310/MRL.2001.v8.n4.a3 | Zbl 1079.14512

[25] Zarkhin Yu.G., Endomorphism rings of certain Jacobians in finite characteristic, Sb. Math., 2002, 193(8), 1139–1149 http://dx.doi.org/10.1070/SM2002v193n08ABEH000673 | Zbl 1044.11051

[26] Zarhin Yu.G., Non-supersingular hyperelliptic Jacobians, Bull. Soc. Math. France, 2004, 132(4), 617–634 | Zbl 1079.14038

[27] Zarhin Yu.G., Homomorphisms of abelian varieties over finite fields, In: Higher-Dimensional Geometry over Finite Fields, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., 16, IOS Press, Amsterdam, 2008, 315–343

[28] Zarhin Yu.G., Homomorphisms of abelian varieties over geometric fields of finite characteristic, J. Inst. Math. Jussieu, 2013, 12(2), 225–236 http://dx.doi.org/10.1017/S1474748012000655 | Zbl 1298.11055

[29] Zarkhin Yu.G., Parshin A.N., Finiteness problems in Diophantine geometry, Amer. Math. Soc. Transl., 1989, 143, 35–102

[30] Zariski O., Samuel P., Commutative Algebra, I, Van Nostrand, Princeton, 1958