Characterization of intermediate values of the triangle inequality II
Hiroki Sano ; Tamotsu Izumida ; Ken-Ichi Mitani ; Tomoyoshi Ohwada ; Kichi-Suke Saito
Open Mathematics, Tome 12 (2014), p. 778-786 / Harvested from The Polish Digital Mathematics Library

In [Mineno K., Nakamura Y., Ohwada T., Characterization of the intermediate values of the triangle inequality, Math. Inequal. Appl., 2012, 15(4), 1019–1035] there was established a norm inequality which characterizes all intermediate values of the triangle inequality, i.e. C n that satisfy 0 ≤ C n ≤ Σj=1n ‖x j‖ − ‖Σj=1n x j‖, x 1,...,x n ∈ X. Here we study when this norm inequality attains equality in strictly convex Banach spaces.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:269713
@article{bwmeta1.element.doi-10_2478_s11533-013-0369-7,
     author = {Hiroki Sano and Tamotsu Izumida and Ken-Ichi Mitani and Tomoyoshi Ohwada and Kichi-Suke Saito},
     title = {Characterization of intermediate values of the triangle inequality II},
     journal = {Open Mathematics},
     volume = {12},
     year = {2014},
     pages = {778-786},
     zbl = {1310.46020},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0369-7}
}
Hiroki Sano; Tamotsu Izumida; Ken-Ichi Mitani; Tomoyoshi Ohwada; Kichi-Suke Saito. Characterization of intermediate values of the triangle inequality II. Open Mathematics, Tome 12 (2014) pp. 778-786. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0369-7/

[1] Abramovich Y.A., Aliprantis C.D., Problems in Operator Theory, Grad. Stud. in Math., 51, American Mathematical Society, Providence, 2002 | Zbl 1022.47002

[2] Ansari A.H., Moslehian M.S., More on reverse triangle inequality in inner product spaces, Int. J. Math. Math. Sci., 2005, 18, 2883–2893 http://dx.doi.org/10.1155/IJMMS.2005.2883 | Zbl 1101.46018

[3] Dadipour F., Moslehian M.S., Rassias J.M., Takahasi S.-E., Characterization of a generalized triangle inequality in normed spaces, Nonlinear Anal., 2012, 75(2), 735–741 http://dx.doi.org/10.1016/j.na.2011.09.004 | Zbl 1242.46029

[4] Dragomir S.S., Reverses of the triangle inequality in Banach spaces, JIPAM. J. Inequal. Pure Appl. Math., 2005, 6(5), #129 | Zbl 1093.46014

[5] Dragomir S.S., Generalizations of the Pečarić-Rajić inequality in normed linear spaces, Math. Inequal. Appl., 2009, 12(1), 53–65 | Zbl 1177.26034

[6] Fujii M., Kato M., Saito K.-S., Tamura T., Sharp mean triangle inequality, Math. Inequal. Appl., 2010, 13(4), 743–752 | Zbl 1208.46021

[7] Hsu C.-Y., Shaw S.-Y., Wong H.-J., Refinements of generalized triangle inequalities, J. Math. Anal. Appl., 2008, 344(1), 17–31 http://dx.doi.org/10.1016/j.jmaa.2008.01.088 | Zbl 1145.26007

[8] Kato M., Saito K.-S., Tamura T., Sharp triangle inequality and its reverse in Banach spaces, Math. Inequal. Appl., 2007, 10(2), 451–460 | Zbl 1121.46019

[9] Maligranda L., Some remarks on the triangle inequality for norms, Banach J. Math. Anal., 2008, 2(2), 31–41 | Zbl 1147.46020

[10] Martirosyan M.S., Samarchyan S.V., Inversion of the triangle inequality in ℝn, J. Contemp. Math. Anal., 2003, 38(4), 56–61 | Zbl 1160.51303

[11] Mineno K., Nakamura Y., Ohwada T., Characterization of the intermediate values of the triangle inequality, Math. Inequal. Appl., 2012, 15(4), 1019–1035 | Zbl 1263.46025

[12] Mitani K.-I., Saito K.-S., On sharp triangle inequalities in Banach spaces II, J. Inequal. Appl., 2010, #323609

[13] Mitani K.-I., Saito K.-S., Kato M., Tamura T., On sharp triangle inequalities in Banach spaces, J. Math. Anal. Appl., 2007, 336(2), 1178–1186 http://dx.doi.org/10.1016/j.jmaa.2007.03.036 | Zbl 1127.46015

[14] Mizuguchi H., Saito K.-S., Tanaka R., On the calculation of the Dunkl-Williams constant of normed linear spaces, Cent. Eur. J. Math., 2013, 11(7), 1212–1227 http://dx.doi.org/10.2478/s11533-013-0238-4 | Zbl 1283.46013

[15] Moslehian M.S., Dadipour F., Rajic R., Maric A., A glimpse at the Dunkl-Williams inequality, Banach J. Math. Anal., 2011, 5(2), 138–151 | Zbl 1225.47022

[16] Ohwada T., On a continuous mapping and sharp triangle inequalities, In: Inequalities and Applications 2010, International Series of Numerical Mathematics, 161, Springer, Basel, 2011, 125–136

[17] Saito K.-S., Mitani K.-I., On sharp triangle inequalities in Banach spaces and their applications, In: Banach and Function Spaces III, Yokohama Publications, Yokohama, 2011, 295–304 | Zbl 1294.46012

[18] Saitoh S., Generalizations of the triangle inequality, JIPAM. J. Inequal. Pure Appl. Math., 2003, 43), #62 | Zbl 1056.46029

[19] Zhang L., Ohwada T., Chō M., Reverses of the triangle inequality in inner product spaces, Math. Inequal. Appl. (in press) | Zbl 1309.46008