The Carathéodory topology for multiply connected domains II
Mark Comerford
Open Mathematics, Tome 12 (2014), p. 721-741 / Harvested from The Polish Digital Mathematics Library

We continue our exposition concerning the Carathéodory topology for multiply connected domains which we began in [Comerford M., The Carathéodory topology for multiply connected domains I, Cent. Eur. J. Math., 2013, 11(2), 322–340] by introducing the notion of boundedness for a family of pointed domains of the same connectivity. The limit of a convergent sequence of n-connected domains which is bounded in this sense is again n-connected and will satisfy the same bounds. We prove a result which establishes several equivalent conditions for boundedness. This allows us to extend the notions of convergence and equicontinuity to families of functions defined on varying domains.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:269107
@article{bwmeta1.element.doi-10_2478_s11533-013-0365-y,
     author = {Mark Comerford},
     title = {The Carath\'eodory topology for multiply connected domains II},
     journal = {Open Mathematics},
     volume = {12},
     year = {2014},
     pages = {721-741},
     zbl = {1297.30045},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0365-y}
}
Mark Comerford. The Carathéodory topology for multiply connected domains II. Open Mathematics, Tome 12 (2014) pp. 721-741. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0365-y/

[1] Ahlfors L.V., Lectures on Quasiconformal Mappings, Van Nostrand Mathematical Studies, 10, Van Nostrand, Toronto, 1966

[2] Beardon A.F., Pommerenke Ch., The Poincaré metric of plane domains, J. London Math. Soc., 1978, 18(3), 475–483 http://dx.doi.org/10.1112/jlms/s2-18.3.475 | Zbl 0399.30008

[3] Carleson L., Gamelin T.W., Complex Dynamics, Universitext Tracts Math., Springer, New York, 1993 | Zbl 0782.30022

[4] Comerford M., Short separating geodesics for multiply connected domains, Cent. Eur. J. Math., 2011, 9(5), 984–996 http://dx.doi.org/10.2478/s11533-011-0065-4 | Zbl 1277.30015

[5] Comerford M., A straightening theorem for non-autonomous iteration, Comm. Appl. Nonlinear Anal., 2012, 19(2), 1–23 | Zbl 1259.37030

[6] Comerford M., The Carathéodory topology for multiply connected domains I, Cent. Eur. J. Math., 2013, 11(2), 322–340 http://dx.doi.org/10.2478/s11533-012-0136-1 | Zbl 1282.30017

[7] Conway J.B., Functions of One Complex Variable, Grad. Texts in Math., 11, Springer, New York-Heidelberg, 1972

[8] Epstein A.L., Towers of Finite Type Complex Analytic Maps, PhD thesis, CUNY Graduate School, 1993

[9] Herron D.A., Liu X.Y., Minda D., Ring domains with separating circles or separating annuli, J. Analyse Math., 1989, 53, 233–252 http://dx.doi.org/10.1007/BF02793416 | Zbl 0697.30021

[10] Keen L., Lakic N., Hyperbolic Geometry from a Local Viewpoint, London Math. Soc. Stud. Texts, 68, Cambridge University Press, Cambridge, 2007 | Zbl 1190.30001

[11] Lang S., Complex Analysis, 3rd ed., Grad. Texts in Math., 103, Springer, New York, 1993

[12] McMullen C.T., Complex Dynamics and Renormalization, Ann. of Math. Stud., 135, Princeton University Press, Princeton, 1994 | Zbl 0822.30002

[13] Newman M.H.A., Elements of the Topology of Plane Sets of Points, 2nd ed., Cambridge University Press, Cambridge, 1961

[14] Pommerenke Ch., Uniformly perfect sets and the Poincaré metric, Arch. Math., 1979, 32(2), 192–199 http://dx.doi.org/10.1007/BF01238490 | Zbl 0393.30005