In this paper we study integral operators with kernels where Ωi: ℝn → ℝ are homogeneous functions of degree zero, satisfying a size and a Dini condition, A i are certain invertible matrices, and n/q 1 +…+n/q m = n−α, 0 ≤ α < n. We obtain the appropriate weighted L p-L q estimate, the weighted BMO and weak type estimates for certain weights in A(p, q). We also give a Coifman type estimate for these operators.
@article{bwmeta1.element.doi-10_2478_s11533-013-0362-1, author = {Mar\'\i a Riveros and Marta Urciuolo}, title = {Weighted inequalities for some integral operators with rough kernels}, journal = {Open Mathematics}, volume = {12}, year = {2014}, pages = {636-647}, zbl = {1284.42040}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0362-1} }
María Riveros; Marta Urciuolo. Weighted inequalities for some integral operators with rough kernels. Open Mathematics, Tome 12 (2014) pp. 636-647. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0362-1/
[1] Bernardis A.L., Lorente M., Riveros M.S., Weighted inequalities for fractional integral operators with kernel satisfying Hörmander type conditions, Math. Inequal. Appl., 2011, 14(4), 881–895 | Zbl 1245.42009
[2] Ding Y., Lu S., Weighted norm inequalities for fractional integral operators with rough kernel, Canad. J. Math., 1998, 50(1), 29–39 http://dx.doi.org/10.4153/CJM-1998-003-1 | Zbl 0905.42010
[3] Duoandikoetxea J., Weighted norm inequalities for homogeneous singular integrals, Trans. Amer. Math. Soc., 1993, 336(2), 869–880 http://dx.doi.org/10.1090/S0002-9947-1993-1089418-5 | Zbl 0770.42011
[4] Duoandikoetxea J., Fourier Analysis, Grad. Stud. Math., 29, American Mathematical Society, Providence, 2001 | Zbl 0969.42001
[5] García-Cuerva J., Rubio de Francia J.L., Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud., 104, North-Holland, Amsterdam, 1985
[6] Godoy T., Urciuolo M., On certain integral operators of fractional type, Acta Math. Hungar., 1999, 82(1–2), 99–105 http://dx.doi.org/10.1023/A:1026437621978 | Zbl 0937.47032
[7] Grafakos L., Classical Fourier Analysis, 2nd ed., Grad. Texts in Math., 249, Springer, New York, 2008 | Zbl 1220.42001
[8] Kurtz D.S., Wheeden R.L., Results on weighted norm inequalities for multipliers, Trans. Amer. Math. Soc., 1979, 255, 343–362 http://dx.doi.org/10.1090/S0002-9947-1979-0542885-8 | Zbl 0427.42004
[9] Muckenhoupt B., Wheeden R., Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc., 1974, 192, 261–274 http://dx.doi.org/10.1090/S0002-9947-1974-0340523-6 | Zbl 0289.26010
[10] Riveros M.S., Urciuolo M., Weighted inequalities for integral operators with some homogeneous kernels, Czechoslovak Math. J., 2005, 55(130)(2), 423–432 http://dx.doi.org/10.1007/s10587-005-0032-y | Zbl 1081.42018
[11] Riveros M.S., Urciuolo M., Weighted inequalities for fractional type operators with some homogeneous kernels, Acta Math. Sin. (Engl. Ser.), 2013, 29(3), 449–460 http://dx.doi.org/10.1007/s10114-013-1639-9 | Zbl 1260.42011
[12] Rocha P., Urciuolo M., On the H p-L q boundedness of some fractional integral operators, Czechoslovak Math. J., 2012, 62(137)(3), 625–635 http://dx.doi.org/10.1007/s10587-012-0054-1 | Zbl 1265.42046
[13] Watson D.K., Weighted estimates for singular integrals via Fourier transform estimates, Duke Math. J., 1990, 60(2), 389–399 http://dx.doi.org/10.1215/S0012-7094-90-06015-6 | Zbl 0711.42025