Maximal pseudocompact spaces and the Preiss-Simon property
Ofelia Alas ; Vladimir Tkachuk ; Richard Wilson
Open Mathematics, Tome 12 (2014), p. 500-509 / Harvested from The Polish Digital Mathematics Library

We study maximal pseudocompact spaces calling them also MP-spaces. We show that the product of a maximal pseudocompact space and a countable compact space is maximal pseudocompact. If X is hereditarily maximal pseudocompact then X × Y is hereditarily maximal pseudocompact for any first countable compact space Y. It turns out that hereditary maximal pseudocompactness coincides with the Preiss-Simon property in countably compact spaces. In compact spaces, hereditary MP-property is invariant under continuous images while this is not true for the class of countably compact spaces. We prove that every Fréchet-Urysohn compact space is homeomorphic to a retract of a compact MP-space. We also give a ZFC example of a Fréchet-Urysohn compact space which is not maximal pseudocompact. Therefore maximal pseudocompactness is not preserved by continuous images in the class of compact spaces.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:268953
@article{bwmeta1.element.doi-10_2478_s11533-013-0359-9,
     author = {Ofelia Alas and Vladimir Tkachuk and Richard Wilson},
     title = {Maximal pseudocompact spaces and the Preiss-Simon property},
     journal = {Open Mathematics},
     volume = {12},
     year = {2014},
     pages = {500-509},
     zbl = {1290.54013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0359-9}
}
Ofelia Alas; Vladimir Tkachuk; Richard Wilson. Maximal pseudocompact spaces and the Preiss-Simon property. Open Mathematics, Tome 12 (2014) pp. 500-509. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0359-9/

[1] Arhangel’skii A.V., Structure and classification of topological spaces and cardinal invariants, Russian Math. Surveys, 1978, 33(6), 33–96 http://dx.doi.org/10.1070/RM1978v033n06ABEH003884

[2] Arhangel’skii A.V., Relations among the invariants of topological groups and their subspaces, Russian Math. Surveys, 1980, 35(3), 1–23 http://dx.doi.org/10.1070/RM1980v035n03ABEH001674

[3] Alas O.T., Sanchis M., Wilson R.G., Maximal pseudocompact and maximal R-closed spaces, Houston J. Math., 2012, 38(4), 1355–1367 | Zbl 1271.54061

[4] Cameron D.E., A class of maximal topologies, Pacific J. Math., 1977, 70(1), 101–104 http://dx.doi.org/10.2140/pjm.1977.70.101 | Zbl 0335.54022

[5] Efimov B.A., Dyadic bicompacta, Trudy Moskov. Mat. Obshch., 1965, 14, 211–247 (in Russian)

[6] Engelking R., General Topology, IMPAN Monogr. Mat., 60, PWN, Warsaw, 1977

[7] Fabian M., Gâteaux Differentiability of Convex Functions and Topology, Canad. Math. Soc. Ser. Monogr. Adv. Texts, John Wiley & Sons, New York, 1997 | Zbl 0883.46011

[8] Gillman L., Jerison M., Rings of Continuous Functions, The University Series in Higher Mathematics, Van Nostrand, Princeton, 1960 http://dx.doi.org/10.1007/978-1-4615-7819-2

[9] Gruenhage G., Generalized metric spaces, In: Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, 423–501

[10] Knaster B., Urbanik K., Sur les espaces complets séparables de dimension 0, Fund. Math., 1953, 40, 194–202

[11] Preiss D., Simon P., A weakly pseudocompact subspace of Banach space is weakly compact, Comment. Math. Univ. Carolinae, 1974, 15(4), 603–609 | Zbl 0306.54033

[12] Porter J.R., Stephenson R.M. Jr., Woods R.G., Maximal feebly compact spaces, Topology Appl., 1993, 52(3), 203–219 http://dx.doi.org/10.1016/0166-8641(93)90103-K

[13] Porter J.R., Stephenson R.M. Jr., Woods R.G., Maximal pseudocompact spaces, Comment. Math. Univ. Carolinae, 1994, 35(1), 127–145 | Zbl 0804.54004

[14] Reznichenko E.A., Extension of functions defined on products of pseudocompact spaces and continuity of the inverse in pseudocompact groups, Topology Appl., 1994, 59(3), 233–244 http://dx.doi.org/10.1016/0166-8641(94)90021-3 | Zbl 0835.22001