A Γ-distance magic labeling of a graph G = (V, E) with |V| = n is a bijection ℓ from V to an Abelian group Γ of order n such that the weight of every vertex x ∈ V is equal to the same element µ ∈ Γ, called the magic constant. A graph G is called a group distance magic graph if there exists a Γ-distance magic labeling for every Abelian group Γ of order |V(G)|. In this paper we give necessary and sufficient conditions for complete k-partite graphs of odd order p to be ℤp-distance magic. Moreover we show that if p ≡ 2 (mod 4) and k is even, then there does not exist a group Γ of order p such that there exists a Γ-distance labeling for a k-partite complete graph of order p. We also prove that K m,n is a group distance magic graph if and only if n + m ≢ 2 (mod 4).
@article{bwmeta1.element.doi-10_2478_s11533-013-0356-z, author = {Sylwia Cichacz}, title = {Note on group distance magic complete bipartite graphs}, journal = {Open Mathematics}, volume = {12}, year = {2014}, pages = {529-533}, zbl = {1284.05122}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0356-z} }
Sylwia Cichacz. Note on group distance magic complete bipartite graphs. Open Mathematics, Tome 12 (2014) pp. 529-533. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0356-z/
[1] Arumugam S., Froncek D., Kamatchi N., Distance magic graphs¶a survey, J. Indones. Math. Soc., 2011, Special edition, 11–26 | Zbl 1288.05216
[2] Beena S., On Σ and Σ′ labelled graphs, Discrete Math., 2009, 309(6), 1783–1787 http://dx.doi.org/10.1016/j.disc.2008.02.038
[3] Cichacz S., Note on group distance magic graphs G[C 4], Graphs Combin. (in press), DOI: 10.1007/s00373-013-1294-z | Zbl 1284.05122
[4] Combe D., Nelson A.M., Palmer W.D., Magic labellings of graphs over finite abelian groups, Australas. J. Combin., 2004, 29, 259–271 | Zbl 1050.05107
[5] Froncek D., Group distance magic labeling of Cartesian product of cycles, Australas. J. Combin., 2013, 55, 167–174 | Zbl 1278.05210
[6] Kaplan G., Lev A., Roditty Y., On zero-sum partitions and anti-magic trees, Discrete Math., 2009, 309(8), 2010–2014 http://dx.doi.org/10.1016/j.disc.2008.04.012 | Zbl 1229.05031