Let F n denote the free group of rank n and d(G) the minimal number of generators of the finitely generated group G. Suppose that R ↪ F m ↠ G and S ↪ F m ↠ G are presentations of G and let and denote the associated relation modules of G. It is well known that even though it is quite possible that . However, to the best of the author’s knowledge no examples have appeared in the literature with the property that . Our purpose here is to exhibit, for each integer k ≥ 1, a group G that has presentations as above such that . Our approach depends on the existence of nonfree stably free modules over certain commutative rings and, in particular, on the existence of certain Hurwitz-Radon systems of matrices with integer entries discovered by Geramita and Pullman. This approach was motivated by results of Adams concerning the number of orthonormal (continuous) vector fields on spheres.
@article{bwmeta1.element.doi-10_2478_s11533-013-0355-0, author = {Martin Evans}, title = {Relation modules of infinite groups, II}, journal = {Open Mathematics}, volume = {12}, year = {2014}, pages = {436-444}, zbl = {1302.20037}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0355-0} }
Martin Evans. Relation modules of infinite groups, II. Open Mathematics, Tome 12 (2014) pp. 436-444. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0355-0/
[1] Adams J.F., Vector fields on spheres, Ann. of Math., 1962, 75, 603–632 http://dx.doi.org/10.2307/1970213 | Zbl 0112.38102
[2] Auslander L., Schenkman E., Free groups, Hirsch-Plotkin radicals, and applications to geometry, Proc. Amer. Math. Soc., 1965, 16(4), 784–788 http://dx.doi.org/10.1090/S0002-9939-1965-0180596-7 | Zbl 0132.01205
[3] Evans M.J., Presentations of groups involving more generators than are necessary, Proc. London Math. Soc., 1993, 67(1), 106–126 http://dx.doi.org/10.1112/plms/s3-67.1.106 | Zbl 0857.20010
[4] Evans M.J., Relation modules of infinite groups, Bull. London Math. Soc., 1999, 31(2), 154–162 http://dx.doi.org/10.1112/S0024609398005165 | Zbl 0931.20028
[5] Evans M.J., Presentations of groups involving more generators than are necessary II, In: Combinatorial Group Theory, Discrete Groups, and Number Theory, Contemp. Math., 421, American Mathematical Society, Providence, 2006, 101–112 http://dx.doi.org/10.1090/conm/421/08029
[6] Evans M.J., Nielsen equivalence classes and stability graphs of finitely generated groups, In: Ischia Group Theory 2006, Ischia, March 29–April 1, 2006, World Scientific, Hackensack, 2007, 103–119
[7] Evans M.J., Nielsen equivalence classes of free abelianized extensions of groups, Israel J. Math., 2012, 191(1), 185–207 http://dx.doi.org/10.1007/s11856-011-0211-5 | Zbl 1283.20026
[8] Geramita A.V., Pullman N.J., A theorem of Hurwitz and Radon and orthogonal projective modules, Proc. Amer. Math. Soc., 1974, 42(1), 51–56 http://dx.doi.org/10.1090/S0002-9939-1974-0332764-4 | Zbl 0279.13007
[9] Gruenberg K.W., Relation Modules of Finite Groups, CBMS Regional Conf. Ser. in Math., 25, American Mathematical Society, Providence, 1976
[10] Magnus W., On a theorem of Marshall Hall, Ann. of Math., 1939, 40(4), 764–768 http://dx.doi.org/10.2307/1968892 | Zbl 0022.31403
[11] Passi I.B.S., Annihilators of relation modules ¶ II, J. Pure Appl. Algebra, 1975, 6(3), 235–237 http://dx.doi.org/10.1016/0022-4049(75)90018-3 | Zbl 0326.20028
[12] Remeslennikov V.N., Sokolov V.G., Some properties of a Magnus embedding, Algebra Logic, 1970, 9(5), 342–349 http://dx.doi.org/10.1007/BF02321898 | Zbl 0247.20026
[13] Robinson D.J.S., A Course in the Theory of Groups, 2nd ed., Grad. Texts in Math., 80, Springer, New York, 1996 http://dx.doi.org/10.1007/978-1-4419-8594-1
[14] Swan R.G., Vector bundles and projective modules, Trans. Amer. Math. Soc., 1962, 105(2), 264–277 http://dx.doi.org/10.1090/S0002-9947-1962-0143225-6 | Zbl 0109.41601
[15] Williams J.S., Free presentations and relation modules of finite groups, J. Pure Appl. Algebra, 1973, 3(3), 203–217 http://dx.doi.org/10.1016/0022-4049(73)90010-8