Relation modules of infinite groups, II
Martin Evans
Open Mathematics, Tome 12 (2014), p. 436-444 / Harvested from The Polish Digital Mathematics Library

Let F n denote the free group of rank n and d(G) the minimal number of generators of the finitely generated group G. Suppose that R ↪ F m ↠ G and S ↪ F m ↠ G are presentations of G and let R¯ and S¯ denote the associated relation modules of G. It is well known that R¯(G)d(G)S¯(G)d(G) even though it is quite possible that . However, to the best of the author’s knowledge no examples have appeared in the literature with the property that . Our purpose here is to exhibit, for each integer k ≥ 1, a group G that has presentations as above such that . Our approach depends on the existence of nonfree stably free modules over certain commutative rings and, in particular, on the existence of certain Hurwitz-Radon systems of matrices with integer entries discovered by Geramita and Pullman. This approach was motivated by results of Adams concerning the number of orthonormal (continuous) vector fields on spheres.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:269689
@article{bwmeta1.element.doi-10_2478_s11533-013-0355-0,
     author = {Martin Evans},
     title = {Relation modules of infinite groups, II},
     journal = {Open Mathematics},
     volume = {12},
     year = {2014},
     pages = {436-444},
     zbl = {1302.20037},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0355-0}
}
Martin Evans. Relation modules of infinite groups, II. Open Mathematics, Tome 12 (2014) pp. 436-444. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0355-0/

[1] Adams J.F., Vector fields on spheres, Ann. of Math., 1962, 75, 603–632 http://dx.doi.org/10.2307/1970213 | Zbl 0112.38102

[2] Auslander L., Schenkman E., Free groups, Hirsch-Plotkin radicals, and applications to geometry, Proc. Amer. Math. Soc., 1965, 16(4), 784–788 http://dx.doi.org/10.1090/S0002-9939-1965-0180596-7 | Zbl 0132.01205

[3] Evans M.J., Presentations of groups involving more generators than are necessary, Proc. London Math. Soc., 1993, 67(1), 106–126 http://dx.doi.org/10.1112/plms/s3-67.1.106 | Zbl 0857.20010

[4] Evans M.J., Relation modules of infinite groups, Bull. London Math. Soc., 1999, 31(2), 154–162 http://dx.doi.org/10.1112/S0024609398005165 | Zbl 0931.20028

[5] Evans M.J., Presentations of groups involving more generators than are necessary II, In: Combinatorial Group Theory, Discrete Groups, and Number Theory, Contemp. Math., 421, American Mathematical Society, Providence, 2006, 101–112 http://dx.doi.org/10.1090/conm/421/08029

[6] Evans M.J., Nielsen equivalence classes and stability graphs of finitely generated groups, In: Ischia Group Theory 2006, Ischia, March 29–April 1, 2006, World Scientific, Hackensack, 2007, 103–119

[7] Evans M.J., Nielsen equivalence classes of free abelianized extensions of groups, Israel J. Math., 2012, 191(1), 185–207 http://dx.doi.org/10.1007/s11856-011-0211-5 | Zbl 1283.20026

[8] Geramita A.V., Pullman N.J., A theorem of Hurwitz and Radon and orthogonal projective modules, Proc. Amer. Math. Soc., 1974, 42(1), 51–56 http://dx.doi.org/10.1090/S0002-9939-1974-0332764-4 | Zbl 0279.13007

[9] Gruenberg K.W., Relation Modules of Finite Groups, CBMS Regional Conf. Ser. in Math., 25, American Mathematical Society, Providence, 1976

[10] Magnus W., On a theorem of Marshall Hall, Ann. of Math., 1939, 40(4), 764–768 http://dx.doi.org/10.2307/1968892 | Zbl 0022.31403

[11] Passi I.B.S., Annihilators of relation modules ¶ II, J. Pure Appl. Algebra, 1975, 6(3), 235–237 http://dx.doi.org/10.1016/0022-4049(75)90018-3 | Zbl 0326.20028

[12] Remeslennikov V.N., Sokolov V.G., Some properties of a Magnus embedding, Algebra Logic, 1970, 9(5), 342–349 http://dx.doi.org/10.1007/BF02321898 | Zbl 0247.20026

[13] Robinson D.J.S., A Course in the Theory of Groups, 2nd ed., Grad. Texts in Math., 80, Springer, New York, 1996 http://dx.doi.org/10.1007/978-1-4419-8594-1

[14] Swan R.G., Vector bundles and projective modules, Trans. Amer. Math. Soc., 1962, 105(2), 264–277 http://dx.doi.org/10.1090/S0002-9947-1962-0143225-6 | Zbl 0109.41601

[15] Williams J.S., Free presentations and relation modules of finite groups, J. Pure Appl. Algebra, 1973, 3(3), 203–217 http://dx.doi.org/10.1016/0022-4049(73)90010-8