We classify quartic del Pezzo surface fibrations over the projective line via numerical invariants, giving explicit examples for small values of the invariants. For generic such fibrations, we describe explicitly the geometry of spaces of sections to the fibration, and mappings to the intermediate Jacobian of the total space. We exhibit examples where these are birational, which has applications to arithmetic questions, especially over finite fields.
@article{bwmeta1.element.doi-10_2478_s11533-013-0354-1, author = {Brendan Hassett and Yuri Tschinkel}, title = {Quartic del Pezzo surfaces over function fields of curves}, journal = {Open Mathematics}, volume = {12}, year = {2014}, pages = {395-420}, zbl = {1286.14013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0354-1} }
Brendan Hassett; Yuri Tschinkel. Quartic del Pezzo surfaces over function fields of curves. Open Mathematics, Tome 12 (2014) pp. 395-420. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0354-1/
[1] Baker H.F., On the invariants of a binary quintic and the reality of its roots, Proc. London Math. Soc., 1908, s2–6(1), 122–140 http://dx.doi.org/10.1112/plms/s2-6.1.122 | Zbl 39.0152.04
[2] Beauville A., Variétés de Prym et jacobiennes intermédiaires, Ann. Sci. École Norm. Sup., 1977, 10(3), 309–391 | Zbl 0368.14018
[3] Brumer A., Remarques sur les couples de formes quadratiques, C. R. Acad. Sci. Paris Sér. A-B, 1978, 286(16), A679–A681 | Zbl 0392.10021
[4] Castravet A.-M., Rational families of vector bundles on curves, Internat. J. Math., 2004, 15(1), 13–45 http://dx.doi.org/10.1142/S0129167X0400220X | Zbl 1092.14041
[5] Cheltsov I., Nonrational nodal quartic threefolds, Pacific J. Math., 2006, 226(1), 65–81 http://dx.doi.org/10.2140/pjm.2006.226.65 | Zbl 1123.14010
[6] Debarre O., Iliev A., Manivel L., On nodal prime Fano threefolds of degree 10, Sci. China Math., 2011, 54(8), 1591–1609 http://dx.doi.org/10.1007/s11425-011-4182-0 | Zbl 1247.14043
[7] Debarre O., Iliev A., Manivel L., On the period map for prime Fano threefolds of degree 10, J. Algebraic Geom., 2012, 21(1), 21–59 http://dx.doi.org/10.1090/S1056-3911-2011-00594-8 | Zbl 1250.14029
[8] Deligne P., Illusie L., Relèvements modulo p 2 et décomposition du complexe de de Rham, Invent. Math., 1987, 89(2), 247–270 http://dx.doi.org/10.1007/BF01389078 | Zbl 0632.14017
[9] Donagi R., The tetragonal construction, Bull. Amer. Math. Soc. (N.S.), 1981, 4(2), 181–185 http://dx.doi.org/10.1090/S0273-0979-1981-14875-8 | Zbl 0491.14016
[10] Esnault H., Varieties over a finite field with trivial Chow group of 0-cycles have a rational point, Invent. Math., 2003, 151(1), 187–191 http://dx.doi.org/10.1007/s00222-002-0261-8 | Zbl 1092.14010
[11] Graber T., Harris J., Starr J., Families of rationally connected varieties, J. Amer. Math. Soc., 2003, 16(1), 57–67 http://dx.doi.org/10.1090/S0894-0347-02-00402-2 | Zbl 1092.14063
[12] Harris J., Roth M., Starr J., Curves of small degree on cubic threefolds, Rocky Mountain J. Math., 2005, 35(3), 761–817 http://dx.doi.org/10.1216/rmjm/1181069707 | Zbl 1080.14008
[13] Harris J., Roth M., Starr J., Abel-Jacobi maps associated to smooth cubic threefolds, preprint available at http://arxiv.org/abs/math/0202080
[14] Hassett B., Rational surfaces over nonclosed fields, In: Arithmetic Geometry, Clay Math. Proc., 8, American Mathematical Society, Providence, 2009, 155–209 | Zbl 1191.14046
[15] Hassett B., Hyeon D., Log minimal model program for the moduli space of stable curves: the first flip, Ann. of Math., 2013, 177(3), 911–968 http://dx.doi.org/10.4007/annals.2013.177.3.3 | Zbl 1273.14034
[16] Hassett B., Tschinkel Yu., uEmbedding pointed curves in K3 surfaces, preprint available at http://arxiv.org/abs/1301.7262
[17] Hassett B., Tschinkel Yu., Spaces of sections of quadric surface fibrations over curves, In: Compact Moduli Spaces and Vector Bundles, Contemp. Math., 564, American Mathematical Society, Providence, 2012, 227–249 http://dx.doi.org/10.1090/conm/564/11161
[18] Hosoh T., Automorphism groups of quartic del Pezzo surfaces, J. Algebra, 1996, 185(2), 374–389 http://dx.doi.org/10.1006/jabr.1996.0331
[19] Iliev A., Markushevich D., The Abel-Jacobi map for a cubic threefold and periods of Fano threefolds of degree 14, Doc. Math., 2000, 5, 23–47 | Zbl 0938.14021
[20] Iliev A., Markushevich D., atParametrization of sing Θ for a Fano 3-fold of genus 7 by moduli of vector bundles, Asian J. Math., 2007, 11(3), 427–458 http://dx.doi.org/10.4310/AJM.2007.v11.n3.a4 | Zbl 1136.14031
[21] de Jong A.J., Starr J., Every rationally connected variety over the function field of a curve has a rational point, Amer. J. Math., 2003, 125(3), 567–580 http://dx.doi.org/10.1353/ajm.2003.0017 | Zbl 1063.14025
[22] Kanev V., Intermediate Jacobians and Chow groups of threefolds with a pencil of del Pezzo surfaces, Ann. Mat. Pura Appl., 1989, 154, 13–48 http://dx.doi.org/10.1007/BF01790341 | Zbl 0708.14030
[23] Koitabashi M., Automorphism groups of generic rational surfaces, J. Algebra, 1988, 116(1), 130–142 http://dx.doi.org/10.1016/0021-8693(88)90196-2
[24] Kollár J., Rational Curves on Algebraic Varieties, Ergeb. Math. Grenzgeb., 32, Springer, Berlin, 1996 http://dx.doi.org/10.1007/978-3-662-03276-3
[25] Lang S., atAbelian varieties over finite fields, Proc. Nat. Acad. Sci. U.S.A., 1955, 41, 174–176 http://dx.doi.org/10.1073/pnas.41.3.174
[26] Leep D.B., The Amer-Brumer theorem over arbitrary fields, preprint available at www.ms.uky.edu/∼leep/Preprints.html
[27] Mabuchi T., Mukai S., Stability and Einstein-Kähler metric of a quartic del Pezzo surface, In: Einstein Metrics and Yang-Mills Connections, Sanda, December 6–11, 1990, Lecture Notes in Pure and Appl. Math., 145, Dekker, New York, 1993, 133–160 | Zbl 0809.53070
[28] Markushevich D., Tikhomirov A.S., The Abel-Jacobi map of a moduli component of vector bundles on the cubic threefold, J. Algebraic Geom., 2001, 10(1), 37–62 | Zbl 0987.14028
[29] Mukai S., Curves and symmetric spaces, I, Amer. J. Math., 1995, 117(6), 1627–1644 http://dx.doi.org/10.2307/2375032 | Zbl 0871.14025
[30] Namikawa Y., Smoothing Fano 3-folds, J. Algebraic Geom., 1997, 6(2), 307–324 | Zbl 0906.14019
[31] Reid M., The complete intersection of two or more quadrics, PhD thesis, Cambridge University, 1972, availble at http://homepages.warwick.ac.uk/∼masda/3folds/qu.pdf
[32] Shatz S.S., On subbundles of vector bundles over P 1, J. Pure Appl. Algebra, 1977/78, 10(3), 315–322 http://dx.doi.org/10.1016/0022-4049(77)90010-X
[33] Shramov K.A., On the rationality of nonsingular threefolds with a pencil of del Pezzo surfaces of degree 4, Sb. Math., 2006, 197(1–2), 127–137 http://dx.doi.org/10.1070/SM2006v197n01ABEH003749 | Zbl 1134.14310
[34] Tjurin A.N., The intersection of quadrics, Uspehi Mat. Nauk, 1975, 30(6), 51–99
[35] Zhu Y., Homogeneous fibrations over curves, preprint available at http://arxiv.org/abs/1111.2963